
Computer Lab 02 Multistep Methods

This lab explores the use of multistep methods of the form

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m, yn+m) where n = 0, 1,

Such an s-step method uses information about the previous s time steps
to obtain an approximation for yn+s. From a practical point of view, one
difficulty is getting started. Given the differential equation

y′ = f(t, y) such that y(t0) = y0

how does one obtain the values for y1, y2, . . . , ys−1 so that ys can subse-
quently be approximated using a multistep method?

One might consider applying Euler’s method to approximate y1, a 2-
step method involving y0 and y1 to approximate y2, a 3-step method involv-
ing y0, y1 and y2 to approximate y3 and so forth until enough time history
is built up to use the s-step method for the rest of the computation. The
difficulty with such an idea is the low order of the initial Euler step limits
the order of convergence for the entire method.

Consider an interval [t0, T] on which one wants to approximate a solu-
tion using N time steps of size h = (T − t0)/N . Let en = yn − y(tn) where
yn approximates the exact solution y(tn). If Euler’s method is used for the
first step, then

∥e1∥ ≤ (1 + hλ)∥e0∥+ ch2 = ch2.

Here we have assumed there is no rounding error in the representation of
the initial condition y(t0) = y0. Unfortunately, no matter how accurate the
remaining steps are, the error e1 will propagate such that the total error is
at best

EN = max
{
∥en∥ : n = 0, . . . , N

}
= O(h2).

Since one of the main uses of multistep methods is to obtain highly accurate
approximations in cases where evaluating f is computationally expensive,
such a restriction on the order of convergence is a problem.

The usual way to overcome this problem is to employ a less efficient
method of sufficiently high order to compute the needed time history and
then finish the computation using the multistep method. One such method
has already been considered: the Taylor method. More commonly Runge–
Kutta methods are used to start a multistep method.

1

Computer Lab 02 Multistep Methods

In this lab we gain experience with multistep methods without having
to worry about how to generate the time history needed to get them started
by considering differential equations for which the exact solution is known.
In this case the values y1, y2, . . . , ys−1 needed to begin the multistep method
may be obtained from the exact solution by setting

y1 = y(t1), y2 = y(t2), . . . , ys−1 = y(ts−1).

We emphasize that the above way of starting a multistep method is of little
practical use and intended only for the purpose of directly studying the
method on its own. In particular, if the exact solution were known, none of
these numerical methods would be needed in the first place.

Algebraic Techniques

Please create a working directory called lab02 to hold your work for this lab.
This section derives the s-step Adams–Bashforth and Nystrom methods
using the polynomials

ρ(w) =
s∑

m=0

amwm and σ(w) =
s∑

m=0

bmwm

along with the theorem that corresponding multistep method is of order p
provided ρ(w)− σ(w) logw = O(|w − 1|p+1).

Since the Adams–Bashforth and Nystrom methods are both explicit,
the Dahlquist first barrier implies p = s. For the Adams–Bashforth take
ρ(w) = ws−1(w − 1) and then find the polynomial σ(w) such that

σ(w) =
ρ(w)

logw
+O

(
|w − 1|p

)
.

This may be done with the Julia TaylorSeries package for s = 3 as follows:

julia> using TaylorSeries

julia> s=3
3

2

Computer Lab 02 Multistep Methods

julia> rho(w)=w^(s-1)*(w-1)
rho (generic function with 1 method)

julia> t=Taylor1(s)
1.0 t + O(t⁴)

julia> sigma=rho(t+1)/log(t+1)
1.0 + 2.5 t + 1.9166666666666667 t² + O(t³)

julia> z=evaluate(sigma,[t-1])[1]
0.41666666666666674 - 1.3333333333333335 t
+ 1.9166666666666667 t² + O(t³)

julia> b=z.coeffs
3-element Vector{Float64}:

0.41666666666666674
-1.3333333333333335
1.9166666666666667

Observing that

5
12 ≈ 0.41666666666666674, − 4

3 ≈ −1.3333333333333335

and 23
12 ≈ 1.9166666666666667

verifies the third-order method

yn+1 = yn + h
{

5
12f(tn−2, yn−2)− 4

3f(tn−1, yn−1) +
23
12f(tn, yn)

}
.

We remark that the above expression has been written in an explicit form
that makes it easier to program.

The three-step Nystrom method can be obtained in a similar way by
setting ρ(w) = ws−2(w2−1) and then solving for σ. In this case one obtains

yn+1 = yn−1 + h
{
b[1]f(tn−2, yn−2)

+ b[2]f(tn−1, yn−1) + b[3]f(tn, yn)
}
.

where b=z.coeffs are the computed coefficients for the polynomial σ. Note
bm = b[m+1] since array indices in Julia start at 1 and have to be shifted.

3

Computer Lab 02 Multistep Methods

The first thing to turn in for this lab is a program called algebra.jl
which computes the coefficients for σ corresponding to the 3-step Nystrom
scheme along with the output of that program.

Numerical Experiments

The second part of this lab is a numerical test of the 3-step Nystrom method.
What needs to be done shall be described in terms of an example which
performs a similar set of steps involving the Adams–Bashforth method.

Theoretically, the 3-step Adams–Bashforth and Nystrom methods both
approximate the exact solution to order O(h3). This means there is a
constant c such that the total error

EN = max
{
∥yn − y(tn)∥ : n = 0, . . . , N

}
≤ ch3 as h → 0.

We now compute the approximations yn for different values of N and verify
the rate of convergence.

Recall the linear differential equation

y′ + 3y = sin t and y(0) = 7

with exact solution

y(t) = 7.1e−3t + 0.3 sin t− 0.1 cos t.

Note that this is the same differential equation considered in the previous
lab on Euler’s method.

Test the 3-step methods derived above using eight steps to approximate
the solution y(t) on the interval [0, 1]. This description in this lab provides
a walk though for the Adams–Bashforth method. Please modify it for the
Nystrom method before turning your work in.

Create a file called numerics.jl. After defining f, y, T, N and h, create
two arrays tn and yn to hold the results of the calculation along with a third
array fn to remember the values of f(tn, yn) so previous values of f don’t
have to be recomputed. The reuse of previously computed values is one of
the reasons multistep methods are useful when f is expensive.

Since this is a 3-step method, initialize the first three values of tn, yn
and fn using the exact solution as

tn[1] = t0, yn[1] = y(t0) and fn[1] = f(t0, y(t0)),
tn[2] = t1, yn[2] = y(t1) and fn[2] = f(t1, y(t1)),
tn[3] = t2, yn[3] = y(t2) and fn[3] = f(t2, y(t2)).

4

Computer Lab 02 Multistep Methods

Again note the offset by one for the index used in Julia compared to the
mathematics. Finally make a loop to compute tn and yn.

The Julia code to do all of the above for the 3-step Adams–Bashforth
method should look like

1 f(t,y)=sin(t)-3*y
2 y(s)=7.1*exp(-3*s)+0.3*sin(s)-0.1*cos(s)
3 t0=0
4 y0=7
5

6 T=1
7 N=8
8 h=(T-t0)/N
9 tn=zeros(N+1)

10 yn=zeros(N+1)
11 fn=zeros(N+1)
12

13 for n=0:2
14 tn[n+1]=t0+h*n
15 yn[n+1]=y(tn[n+1])
16 fn[n+1]=f(tn[n+1],yn[n+1])
17 end
18 for n=3:N
19 tn[n+1]=t0+h*n
20 yn[n+1]=yn[n]+h*(5/12*fn[n-2]-4/3*fn[n-1]+23/12*fn[n])
21 fn[n+1]=f(tn[n+1],yn[n+1])
22 end

Run the code by typing include("numerics.jl") in the repl.

At this point it is useful to visualize the solution and its approximation.
This can be done interactively using the Plots package. To obtain

5

Computer Lab 02 Multistep Methods

enter the following into the repl:

julia> using Plots

julia> ts=0:0.01:1
0.0:0.01:1.0

julia> plot(ts,y.(ts),label="exact")

julia> scatter!(tn,yn,label="AB3")

Note that the approximation is visually indistinguishable from the exact
solution. We will check how the error depends on the step size shortly.
Before that, however, modify the program to use the Nystrom method in-
stead of Adams–Bashforth. Change the legend on the graph so the ap-
proximation given by the scatter plot is labeled Nystrom3. Then type
savefig("nystrom.pdf") to save the final graph to a pdf as part of the
work to turn in for this lab.

Study of Convergence

So far we’ve derived the Nystrom method using algebraic techniques and
used eight time steps of that method to compute an approximation of the
differential equation. As with the Euler method, next add an additional
loop to compute the error EN for different values of N .

6

Computer Lab 02 Multistep Methods

After some changes we arrive at

1 f(t,y)=sin(t)-3*y
2 y(s)=7.1*exp(-3*s)+0.3*sin(s)-0.1*cos(s)
3 t0=0
4 y0=7
5

6 T=1
7 J=10
8 EN=zeros(J)
9 HN=zeros(J)

10 for j=1:J
11 N=2^(j+2)
12 h=(T-t0)/N
13 tn=zeros(N+1)
14 yn=zeros(N+1)
15 fn=zeros(N+1)
16

17 for n=0:2
18 tn[n+1]=t0+h*n
19 yn[n+1]=y(tn[n+1])
20 fn[n+1]=f(tn[n+1],yn[n+1])
21 end
22 for n=3:N
23 tn[n+1]=t0+h*n
24 yn[n+1]=yn[n]+h*(5/12*fn[n-2]-4/3*fn[n-1]+23/12*fn[n])
25 fn[n+1]=f(tn[n+1],yn[n+1])
26 end
27 HN[j]=h
28 EN[j]=maximum(abs.(yn-y.(tn)))
29 end
30

31 using Plots
32 scatter(HN,EN,scale=:log10,
33 legend=:topleft,label="EN")
34 plot!(HN,25*HN.^3,label="25*h^3")

7

Computer Lab 02 Multistep Methods

Note how the error EN parallels the line ch3. This verifies the method
is order O(h3). The value of c was found to be 25 for the Adams–Bashforth
method using guess and check. Now, change the code so it uses the Nystrom
method, adjust c if necessary and type savefig("error.pdf") in the repl
to save the error graph.

Although both methods are third order, it is interesting to compare
the value of c between the Adams–Bashforth and Nystrom methods. This
may be done for extra credit by performing a least squares fit to find c for
both the Adams–Bashforth and Nystrom methods. Is c very much different
in either case? Please upload your extra credit work under lab02ec on the
course management system.

Submitting Your Work

Three things should be uploaded for grading:

• A pdf file containing algebra.jl and its output.

• The graph nystrom.pdf of the Nystrom approximation.

• The graph error.pdf for the error analysis.

The files nystrom.pdf and error.pdf have already been created and should
be in the lab02 subdirectory. The only thing left is to convert algebra.jl
and its output into a pdf file for upload. In the lab the commands

$ julia algebra.jl >algebra.out
$ j2pdf -o algebra.pdf algebra.jl algebra.out

may be used to produce a file algebra.pdf suitable for uploading. You may
check your submission using evince to view the pdf files.

Before leaving don’t forget to close the applications open on your desk-
top and logout. Exit the Julia repl by typing ⟨ctrl⟩-d and then ⟨ctrl⟩-d
again to close the terminal. The editor has a menu at the top. If using one
of the lab computers, please reboot it into Microsoft Windows.

8

using TaylorSeries
s=3
rho(w)=w^(s-1)*(w-1)
t=Taylor1(s)
sigma=rho(t+1)/log(t+1)
z=evaluate(sigma,[t-1])[1]
a=z.coeffs

f(t,y)=sin(t)-3*y
y(s)=7.1*exp(-3*s)+0.3*sin(s)-0.1*cos(s)
t0=0
y0=7

T=1
J=10
EN=zeros(J)
HN=zeros(J)
for j=1:J
	N=2^(j+2)
	h=(T-t0)/N
	tn=zeros(N+1)
	yn=zeros(N+1)
	fn=zeros(N+1)

	for n=0:2
		tn[n+1]=t0+h*n
		yn[n+1]=y(tn[n+1])
		fn[n+1]=f(tn[n+1],yn[n+1])
	end
	for n=3:N
	 tn[n+1]=t0+h*n
	 yn[n+1]=yn[n]+h*(5/12*fn[n-2]-4/3*fn[n-1]+23/12*fn[n])
		fn[n+1]=f(tn[n+1],yn[n+1])
	end
	HN[j]=h
	EN[j]=maximum(abs.(yn-y.(tn)))
end

using Plots
scatter(HN,EN,scale=:log10,
	legend=:topleft,label="EN")
plot!(HN,25*HN.^3,label="25*h^3")

