
Computer Lab 03 Polynomial Interpolation

In science and engineering an important goal is to become a skilled prac-
titioner by doing it yourself. The computer labs provide computational
experience related to the analytic theory presented in the lectures.

Lagrange Polynomial

A striking property of polynomials evident when studying calculus is that
the integrals and derivatives of polynomials are again polynomials. This
along with the fact that any continuous function can be approximated arbi-
trarily well by a suitable polynomial suggests polynomials as fundamental
building blocks for numerical calculations. In practice, therefore, we need
efficient ways to represent and evaluate polynomials on the computer.

In this lab you will find the interpolating polynomial p of degree 4
passing through the points

(xi, log xi) where xi = 1 + 0.5i and i = 1, . . . , 5, (8.1)

evaluate p(2.25) and then compute the error E = |p(2.25)− log 2.25|. Note
in this example that log x represents the natural logarithm.

There is frequently a trade off between complexity, efficiency and cor-
rectness when writing computer programs:

• The simpler an algorithm is the less likely it is to be the most efficient.

• The more complex an algorithm is the more likely the code has a blun-
der which produces incorrect answers.

Producing incorrect answers no matter how efficiently can lead to trouble,
because in the real world you would not be programming a computer in the
first place if the answer were already known. For this reason, anything that
helps ensure correctness is a priority.

Development methodologies such as Agile, DevOps, Rad, Scrum, Pro-
totyping and Waterfall represent attempts to produce software at lowest
cost with the best quality in the shortest time. Ideally what constitutes a
deliverable product guides the assessment of risk in the development pro-
cess and informs what methodology to use. For example, the risk related
to bugs in a video game or website may be less than a banking system or
industrial control program.

In the present context program bugs affect only a course grade and even
then not so much. However, depending on the domain of application the

1

Computer Lab 03 Polynomial Interpolation

consequence of getting an incorrect result may be greater as well as more
difficult to detect. In many fields of human endeavor “a wrong answer is
worse than no answer.” When having the right answer makes a difference
“getting the wrong answer and running with it causes even more problems.”

I found the above quotes in a blog by Laurie Barth about the causes
and dangers of wrong answers at

https://tenmilesquare.com/resources/technology-leadership/a-wrong-
answer-is-worse-than-no-answer/

Please do not spend too much time, if any, reading this link during class.
In this lab the program we shall write uses the simplest technique avail-

able to help ensure getting a correct answer. In particular, the Lagrange
polynomial basis—though not the most efficient—leads to a diagonal Van-
dermonde matrix that makes solving for the coefficients trivial. As a result,
there is little chance to make a blunder.

Once a working but slow algorithm is produced, a more efficient method
can be developed keeping the original program as a reference to ensure
the answers are consistent and correct. For example, techniques based on
Newton’s divided difference formula may be more efficient in cases where
polynomials of varying degrees are needed to satisfy some error criterion.
While doing things in the simplest way first and later refining the program is
similar to prototyping, this technique is so common in scientific computing
that such terminology is seldom mentioned.

Consider the unique polynomial of degree n − 1 passing through n
points given by

(xi, yi) where i = 1, . . . , n.

Here the values of xi are assumed distinct; otherwise, no function would
pass through the points at all. The corresponding Lagrange basis functions
ℓk(t) are given by

ℓk(t) =
∏
i ̸=k

xi − t

xi − xk
for k = 1, . . . , n.

We begin by writing code in Julia to compute these functions.
Some people experienced in with programming may already be thinking

how to express ℓk(t) in their favorite language. Depending on language and
personal preference, that code might be procedural and involve a for loop

2

https://tenmilesquare.com/resources/technology-leadership/a-wrong-answer-is-worse-than-no-answer/

Computer Lab 03 Polynomial Interpolation

or a functional technique with vector operators. Since Julia is just-in-time
compiled with built-in vector operations it can handle either paradigm well.

Assuming the values of xi are stored in the array x[i], code for the
functional approach is illustrated by ellf(k,t) and the procedural approach
by ellp(k,t) as follows

1 ellf(k,t)=prod([x[1:k-1];x[k+1:length(x)]].-t)/
2 prod([x[1:k-1];x[k+1:length(x)]].-x[k])
3

4 function ellp(k,t)
5 p=1
6 q=1
7 for i=1:length(x)
8 if i!=k
9 p*=x[i]-t

10 q*=x[i]-x[k]
11 end
12 end
13 return p/q
14 end

Although ellp(k,t) consists of more lines of code and introduces the
extra variables p and q, which version is easier to understand is related
more to familiarity with the paradigm rather than intrinsic differences in
complexity. While we are already sunk from a performance point of view
by using the Lagrange basis in the first place, it is still interesting to know
how the computational efficiency of the functional version compares with
the procedural implementation. Note also since both routines express the
exact same calculation, they should return the same results. Computing
the same thing two different ways—which we now do—helps detect bugs.

For your convenience this pdf document contains an attachment called
lagrange.jl with machine-readable copies of ellf(k,t) and ellp(k,t). To
save this file to your local computer

• Open the side panel of your pdf viewer.

• Click on the paperclip icon.

• Right click on lagrange.jl and select save.

3

Computer Lab 03 Polynomial Interpolation

If you are following the naming convention suggested in the first lab, save
the file to the directory lab03.

At this point open a terminal window, change to the directory where
you saved the file and start Julia. Then type include("lagrange.jl") to
load the code into the repl. Your screen should look like

$ cd lab03
$ julia

_
_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.6.6 (2022-03-28)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |

julia> include("lagrange.jl")
pp (generic function with 1 method)

julia>

If instead you are treated to the lengthy error message

julia> include("lagrange.jl")
ERROR: SystemError:

opening file "/x/libb/ejolson/lab03/lagrange.jl":
No such file or directory

Stacktrace:
[1] systemerror(p::String, errno::Int32; extrainfo::Nothing)

@ Base ./error.jl:168
[2] #systemerror#62

@ ./error.jl:167 [inlined] ...the rest omitted...

do not panic. This is simply Julia’s way of explaining you saved the attach-
ment in the wrong place. Make sure both Julia and lagrange.jl are in the

4

Computer Lab 03 Polynomial Interpolation

lab03 directory and try again. The commands pwd() and readdir() can be
entered from the Julia repl to figure out what is going on.

After including lagrange.jl test ellf(k,t) and ellp(k,t) to see if they
both return the same values. Create some random data by typing x=rand(5)
and then enter ellf(2,0.5) followed by ellp(2,0.5). It is a good sign if the
return values are the same. Please check some additional points on your
own. Note that k must be an integer between 1 and 5 while t can be any
valid floating-point number.

Since the random vector x will be different for each person the output
will vary accordingly. Here is a representative example

julia> x=rand(5)
5-element Vector{Float64}:
0.949333046824119
0.5352022327558354
0.9268708406141919
0.29664466861532257
0.6995775657397101

julia> ellf(2,0.5)
1.2239001449856663

julia> ellp(2,0.5)
1.2239001449856663

Note that both versions of ℓk(t) produce the same value.
By design the functions ℓk(t) are each polynomials of degree n−1 which

satisfy the orthogonality property

ℓk(xj) =

{
1 if j = k
0 if j ̸= k.

Thus, the Vandermonde matrix V where Vj,k = ℓk(xj) is diagonal. This
can be verified numerically with the commands

Vf=[ellf(k,x[j]) for j=1:5, k=1:5]

Vp=[ellp(k,x[j]) for j=1:5, k=1:5]

5

Computer Lab 03 Polynomial Interpolation

The output should look like

julia> Vf=[ellf(k,x[j]) for j=1:5, k=1:5]
5×5 Matrix{Float64}:

1.0 0.0 0.0 -0.0 -0.0
-0.0 1.0 0.0 0.0 -0.0
-0.0 -0.0 1.0 0.0 0.0
0.0 -0.0 -0.0 1.0 0.0
0.0 0.0 -0.0 -0.0 1.0

julia> Vp=[ellp(k,x[j]) for j=1:5, k=1:5]
5×5 Matrix{Float64}:

1.0 0.0 0.0 -0.0 -0.0
-0.0 1.0 0.0 0.0 -0.0
-0.0 -0.0 1.0 0.0 0.0
0.0 -0.0 -0.0 1.0 0.0
0.0 0.0 -0.0 -0.0 1.0

Although it is satisfying both Vf and Vp appear exactly the same, the
fact that zero sometimes prints as -0.0 seems weird. Note also that

julia> Vf[1,2]
0.0

julia> Vf[2,1]
-0.0

julia> Vf[1,2]==Vf[2,1]
true

indicates the zero which prints with a negative sign is equal to the zero that
prints with a positive sign. Explaining what is going on is an opportunity
for extra credit. If interested, please do not spend time right now, but study
negative zeros at home and turn your extra-credit in next week.

6

Computer Lab 03 Polynomial Interpolation

Back on topic, since V is diagonal, the polynomial p(t) of degree n− 1
passing through the points (xi, yi) may be expressed as

p(t) =

n∑
k=1

ykℓk(t).

The above sum may be coded using either a functional or procedural
approach in Julia. Two possible implementations of p(t) are

16 pf(t)=sum((k->y[k]*ellf(k,t)).(1:length(x)))
17

18 function pp(t)
19 s=0
20 for k=1:length(x)
21 s+=y[k]*ellp(k,t)
22 end
23 return s
24 end

Here pf(t) is the functional version and pp(t) is written in a procedu-
ral style. Note how the broadcast . in the functional version applies the
function k → ykℓk(t) to an iterator that represents the indices for k.

Having grown up with Basic, C, Fortran and Pascal, the kind of
functional programming in line 16 often seems unnaturally clever to me.
Fortunately, due to the level of optimization provided by the just-in-time
compiler, the for loops in Julia typically run just as fast as vectorized code.
Thus, one can switch back and forth between whatever programming style
seems easiest without worrying too much about performance.

The computation requested in (8.1) can now be performed by specifying
the vectors x and y as

x=1.5:0.5:3.5 and y=log.(x)

and typing pp(2.25) and abs(pp(2.25)-log(2.25)) to evaluate the interpo-
lating polynomial and compute the requested error.

7

Computer Lab 03 Polynomial Interpolation

Submitting Your Work

Two things should be uploaded for grading:

• A program that evaluates and computes the error in the polynomial.

• The output from running that program.

To help with the items above, here is a program that does just that:

1 # soln03.jl -- evaluate and compute the error in p(2.25)
2

3 include("lagrange.jl")
4 x=1.5:0.5:3.5
5 y=log.(x)
6 println("p(2.25)=",pp(2.25))
7 println("E=",abs(pp(2.25)-log(2.25)))

After running the above code with

julia soln03.jl >soln03.out

convert soln03.jl and soln03.out to pdf or Postscript format and upload
the converted versions of these files for grading to the course management
system. Please reboot into Microsoft Windows before leaving.

8

ellf(k,t)=prod([x[1:k-1];x[k+1:length(x)]].-t)/
 prod([x[1:k-1];x[k+1:length(x)]].-x[k])

function ellp(k,t)
	p=1
	q=1
	for i=1:length(x)
		if i!=k
			p*=x[i]-t
			q*=x[i]-x[k]
		end
	end
	return p/q
end

pf(t)=sum((k->y[k]*ellf(k,t)).(1:length(x)))

function pp(t)
	s=0
	for k=1:length(x)
		s+=y[k]*ellp(k,t)
	end
	return s
end

soln03.jl -- evaluate and compute the error in p(2.25)

include("lagrange.jl")
x=1.5:0.5:3.5
y=log.(x)
println("p(2.25)=",pp(2.25))
println("E=",abs(pp(2.25)-log(2.25)))

