Computer Lab 04 Explicit Runge-Kutta Methods

This lab explores the use of explicit Runge-Kutta methods of the form

51 = Yn
52 = Yn + hanf(tnagl)
€3 = yn + hasi f(tn, &) + hasa f(tn + c2h, &2)

v—1

E =Yn+hY avif(tn +cih, &)
=1

Ynt1 =Y+ 0D b ftn +cih, ;).
j=1

Recall & ~ y(t, + ¢;h) and y,, ~ y(t,) where t,, = to + hn. Also,

v—1

C1 :0, Co = Q21, C3 = a3y +asz, ..., C, = Ay
1

7

and further that >, b; = 1.

Such a v-stage method uses repeated nesting of the function f along
with multiplication by h to obtain a higher-order approximation ¥, from
the lower-order terms represented by &;.

While the form presented above is useful for analysis, it makes practical
sense to identify common subexpressions so that f is evaluated as few times
as possible. Setting k; = f(t, + ¢;h,&;) thus leads to

kl — f(tnayn)
ko = f(tn + c2h, yn + hagik1)

ks = f(tn + csh,yn + h(asik1 + as2kz))

v—1

k, = f(tn +coh,yn + h Z a,,iki)

=1

Unt1=1Yn +h D bik;.

=1

o N O Ot ks W

Computer Lab 04 Explicit Runge-Kutta Methods

In this lab we shall use the RK4 method with tableaux given by

0

1)1

2 | 2

1 1

210 3

c | A 110 01
- 1 1 1 1

b 5§ 3 3 §

to approximate solutions of a coupled system of three ordinary differential
equations called the Lorenz system.

The Lorenz System

The Lorenz system is an autonomous three-dimensional ordinary differential
equation of the form

with a given initial condition y(0) = yo where y(t) is a vector in R® and

—10y; + 10y2

fy) = | 28y1 — Y2 — y1y3
Y1y — (8/3)y3

Each person will have a different initial condition y9. Click on the
following link to retrieve the values of your initial condition:

https://fractal.math.unr.edu/~ejolson/467-23/y0/mky0. cqgi

Please do not use anyone else’s initial condition for this lab.
To implement the RK4 method described above first write a subroutine
to compute the function f(y). In Julia this may be done with the code

function f(y)
r=[10*(y[2]-y[1]),
(28.0-y[3])*y[1l]-y[2],
y[1]*y[2]-(8/3)*yl[3]]
return r
end

https://fractal.math.unr.edu/~ejolson/467-23/y0/mky0.cgi

10
11
12
13
14
15

16

18
19

20

Computer Lab 04 Explicit Runge-Kutta Methods

The RK4 Timestep

Next, write a subroutine to make one RK4 timestep. Using the coefficients
given in the tableaux to compute the k; yields

function rk4(y,h)

k1=f(y)

k2=f (y+h*1/2*k1l)

k3=f (y+h*1/2*k2)

k4=f (y+h*k3)

return y+h*(1/6*k1+1/3*k2+1/3*k3+1/6*k4)
end

Note Julia will use multiple dispatch to compile efficient versions of rk4 for
whatever length vectors appear as y in the arguments. The built-in vector
notation then makes the code for solving systems of ordinary differential
equations appear identical to the code for solving scalar equations.

Plotting the Solution

Our goal is to plot an approximation of the solution’s trajectory in phase
space for ¢t € [0,T] where T' = 10. This will yield a visualization of what has
commonly been called the Lorenz butterfly in chaos theory and the study
of nonlinear dynamics.

Consider approximating the solution using N = 20480 time steps of
size h = T/N. The result in a sequence of 20480 vectors y, € R3. While
the plotting system would likely handle 20480 points without trouble, it’s
not difficult to imagine lengthier calculations with even more points. Thus,
it is reasonable to plot only a subsample of the total timesteps.

One way to do this is with two nested loops where the outer loop stores
the points to be plotted while the inner loop advances a certain number of
time steps to find the next suitable point for plotting. To make the code
more straight forward, we place the inner loop in a separate subroutine
solve that performs n steps of size h. In particular, we have

function solve(y0,h,n)
yn=copy (y0)
for j=1:n

21
22
23

24

26
27
28
29
30
31

33

Computer Lab 04 Explicit Runge-Kutta Methods

yn=rk4(yn,h)
end
return yn
end

It’s worth mentioning that line 19 copies the initial condition as yn=copy(y0)
to prevent y0 from getting overwritten. If instead line 19 appeared as yn=y0
this would indicate yn is a pointer referencing y0. In that case any changes
to yn would also change y0. The explicit copy avoids this pitfall.

Before writing the outer loop that repeatedly calls solve we need to
decide how many rk4 steps should be made between the points we plot. One
doesn’t want to plot so many points that the plotting library runs slowly
or out of memory, nor does one want to plot so few points that the graph
no longer appears like a smooth solution to a differential equation.

Given the apparent speed at which the dynamics in the Lorenz equa-
tions evolve and the fact that h = 1/2048, skipping every m = 16 timesteps
between plotted points still yields a smooth curve. On the other hand,
skipping every 16 timesteps reduces the number of points to plot from
N = 20480 to P = 1280 which results in a graph that is efficient to render.

Code to calculate the relevant parameters used in the loops is

N=20480
T=10
h=T/N

m=16
P=N-+m

Note that line 31 includes the Unicode integer division operator + rather
than the usual / which would have resulted in a floating point value. This
character can be entered in the Julia REPL by typing \div followed by the
(tab) key. If you have difficulty typing + into the editor try cut and paste
from the REPL using the mouse.

One can initialize the arrays in which to store the points for plotting
and write the outer loop as

X=zeros(P)

34
35
36
37
38
39
40
41
42
43
44

46

Computer Lab 04 Explicit Runge-Kutta Methods

Y=zeros(P)
Z=zeros(P)

y0=[-2.20, -3.46, 16.67]
yj=copy(y0)
for j=1:P
global yj=solve(yj,h,m)
X[31=yjl1]
Y[jl=yjl2]
Z[j1=yjl[3]
end

The initial condition y0 appearing on line 37 reflects the value when I click
on the web link mentioned earlier. You will have to change this to your
individualized initial condition. Line 40 includes a global declaration to
resolve the ambiguity between yj in the global scope and the possibility of
a local version of yj inside the scope of the loop.

Finally, to create a graph that looks similar to

[-2.2,-3.46, 16.67]

40

30

20

plot the output using the Plots library.

using Plots

a7 plot(X,Y,Z,label="%$y0")
48 savefig("butterfly.pdf")

Computer Lab 04 Explicit Runge-Kutta Methods

At this point you should have a file called butterfly.pdf stored in your
working directory. If it looks ezxactly like the above figure, that may mean
you forgot to change the initial condition.

Extra Credit

For extra credit refine the stepsize of your solution by making N larger
(and h smaller) in order to approximate the solution y(10) to three decimal
places. Consider a sequence of smaller and smaller step sizes and show that
the resulting approximations yy appear to converge numerically. Can you
find four decimal places? What about five?

Submitting Your Work
Two things should be uploaded for grading:

e A PDF file lorenz.pdf containing the code lorenz.jl used to generate
the graph butterfly.pdf.

e The graph butterfly.pdf corresponding to your initial condition.
The files butterfly.pdf has already been created and should be in the 1ab04

subdirectory. The only thing left is to convert lorenz.j1 and its output into
a PDF file for upload. In the lab the commands

$ j2pdf -o lorenz.pdf lorenz.jl

may be used to produce a file lorenz.pdf suitable for uploading. You may
check your submission using evince to view the PDF files.

Before leaving don’t forget to close the applications open on your desk-
top and logout. Exit the Julia REPL by typing (ctrl)-d and then (ctrl)-d
again to close the terminal. The editor has a menu at the top. If using one
of the lab computers, please reboot it into Microsoft Windows.

lorenz.jl -- Draw the Lorenz Butterfly

function f(y)
 r=[10*(y[2]-y[1]),
 (28.0-y[3])*y[1]-y[2],
 y[1]*y[2]-(8/3)*y[3]]
 return r
end

function rk4(y,h)
 k1=f(y)
 k2=f(y+h*1/2*k1)
 k3=f(y+h*1/2*k2)
 k4=f(y+h*k3)
 return y+h*(1/6*k1+1/3*k2+1/3*k3+1/6*k4)
end

function solve(y0,h,n)
 yn=copy(y0)
 for j=1:n
 yn=rk4(yn,h)
 end
 return yn
end

N=20480
T=10
h=T/N

m=16
P=Nรทm

X=zeros(P)
Y=zeros(P)
Z=zeros(P)

y0=[-2.20, -3.46, 16.67]
yj=copy(y0)
for j=1:P
	global yj=solve(yj,h,m)
	X[j]=yj[1]
	Y[j]=yj[2]
	Z[j]=yj[3]
end

using Plots
plot(X,Y,Z,label="$y0")
savefig("butterfly.pdf")

