
Computer Lab 05 Finite Differences

This lab explores the use of finite difference methods to approximate the
solution y(x) to linear boundary value problems of the form

y′′ = p(x)y′ + q(x)y + r(x) for a ≤ x ≤ b

where y(a) = α and y(b) = β. Under the assumptions that p, q and r are
continuous and moreover that q > 0, it is theoretically known there is a
unique solution y(x) to the differential equation. It therefore makes sense
to try and approximate that solution numerically.

Begin by recalling that the derivative operator D satisfies

D =
1

h
log E =

2

h
log

(
1
2 (∆0 +

√
∆2

0 + 4I)
)

where E and ∆0 are respectively the shift and central difference operators

Ezk = zk+1 and ∆0zk = zk+ 1
2
− zk− 1

2
.

Since ∆0 = O(h) and assuming h is sufficiently small, a power-series
expansion of log yields

D2 =
4

h2

∞∑
j=0

∞∑
ℓ=0

1

2j + 1

(
−1/2

j

)
1

2ℓ+ 1

(
−1/2

j

)(
1
2∆0

)2j+2ℓ+2
.

Truncating the series to the leading term yields

D2 =
4

h2

(
1
2∆0

)2
=

1

h2
∆2

0 +O(h2).

This approximation will represent y′′.
For the first derivative recall the formula

D =
1

h
∆0Υ0

∞∑
j=0

∞∑
ℓ=0

(
−1/2

j

)
1

2ℓ+ 1

(
−1/2

ℓ

)(
1
2∆0

)2j+2ℓ

where Υ0 is the averaging operator

Υ0zk = 1
2

(
zk+ 1

2
+ zk− 1

2

)
.

1

Computer Lab 05 Finite Differences

Again truncate the series to one term to obtain

D =
1

h
∆0Υ0 +O(h2).

This shall be used to approximate y′.

Discretizing the Differential Equation

To discretize the differential equation divide the domain [a, b] into m + 1
equal pieces of size h = (b−a)/(m+1). Consider the grid points xk = a+hk
for k = 1, . . . ,m. Let yk be approximation of the exact solution y(xk) at
each grid point. Note the boundary conditions imply y0 = α and ym+1 = β.

Having defined yk, now employ the approximations

y′′(xk) ≈
1

h2
∆2

0yk and y′(xk) ≈
1

h
∆0Υ0yk

to write the differential equation as the difference equation

1

h2
∆2

0yk = p(xk)
1

h
∆0Υ0yk + q(xk)yk + r(xk)

for k = 1, 2, . . . ,m. Since

1

h2
∆2

0yk =
yk+1 − 2yk + yk−1

h2
and

1

h
∆0Υ0yk =

yk+1 − yk−1

2h
,

then writing pk = p(xk), qk = q(xk) and rk = r(xk) yields

yk+1 − 2yk + yk−1

h2
= pk

yk+1 − yk−1

2h
+ qkyk + rk.

Equivalently,

−yk+1 + 2yk − yk−1 +
h
2 pk(yk+1 − yk−1) + h2qkyk = −h2rk

for k = 1, 2, . . . ,m.
The equations when k = 1 and k = m can be rewritten involving the

boundary conditions y0 = α and ym+1 = β as

−y2 + 2y1 +
h
2 p1y2 + h2q1y1 = α+ h

2 p1α− h2r1.

2

Computer Lab 05 Finite Differences

and
2ym − ym−1 − h

2 pmym−1 + h2qmym = β − h
2 pmβ − h2rm.

The terms with yk have been written on the left and the boundary terms
placed on the right. The result is a system of m linear equations in the m
unknowns given by yk for k = 1, 2, . . . ,m.

To solve for the yk, write the system in matrix form as Ay = c where

A =

2 + h2q1 −1 + h
2 p1 0 · · · 0

−1− h
2 p2 2 + h2q2 −1 + h

2 p2 0
...

0
. . .

. . .
. . . 0

... 0 −1− h
2 pm−1 2 + h2qm−1 −1 + h

2 pm−1

0 · · · 0 −1− h
2 pm 2 + h2qm

and

c = (α+ h
2 p1α− h2r1,−h2r2, . . . ,−h2rm−1, β − h

2 pmβ − h2rm).

Sparse Matrices

The matrix A corresponding to the finite difference scheme has a lot of ze-
ros. In particular only the diagonal, subdiagonal and supradiagonal entries
contain coefficients of the system. For an m × m matrix this means that
3m− 2 entries out of m2 are non-zero. For example, if m = 128 then

3m− 2

m2
=

382

16384
≈ 2.3 percent

of the entries are non-zero. This is called a sparse matrix.
As it would be wasteful to store all those zeros in memory and even

more wasteful to compute with them, Julia includes a library for working
such matrices called SparseArrays.

One way create a sparse matrix in Julia is to first create a regular
matrix A and then convert it to a sparse matrix by removing the zeros with
A=sparse(A). This technique is demonstrated as follows:

julia> using LinearAlgebra,SparseArrays

3

Computer Lab 05 Finite Differences

julia> A=diagm([1.0,2,3,4])
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.0 2.0 0.0 0.0
0.0 0.0 3.0 0.0
0.0 0.0 0.0 4.0

julia> A=sparse(A)
4×4 SparseMatrixCSC{Float64, Int64} with 4 stored entries:
1.0 ⋅ ⋅ ⋅
⋅ 2.0 ⋅ ⋅
⋅ ⋅ 3.0 ⋅
⋅ ⋅ ⋅ 4.0

There is an obvious drawback to this technique because the initial
step of constructing the matrix could take too much memory. A better
way constructs the sparse matrix directly by specifying only the non-zero
entries. This can by done with sparse(xs,ys,axy) which creates a matrix
with entries aij such that

aij =
{
axy[k] for i = xs[k] and j = ys[k]
0 otherwise.

For example,

julia> A=sparse(1:4,1:4,[1.0,2,3,4])
4×4 SparseMatrixCSC{Float64, Int64} with 4 stored entries:
1.0 ⋅ ⋅ ⋅
⋅ 2.0 ⋅ ⋅
⋅ ⋅ 3.0 ⋅
⋅ ⋅ ⋅ 4.0

constructs the same sparse matrix but without the intermediate step that
requires allocating the memory needed for a full m×m array.

Sometimes, specifying lists of indices and values is tricky. A compro-
mise solution is to first declare a sparse matrix with no non-zero entries and
then fill in the needed values using an assignment within a loop.

4

Computer Lab 05 Finite Differences

julia> A=spzeros(4,4)
4×4 SparseMatrixCSC{Float64, Int64} with 0 stored entries:

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

julia> for i=1:4
A[i,i]=i

end

julia> A
4×4 SparseMatrixCSC{Float64, Int64} with 4 stored entries:
1.0 ⋅ ⋅ ⋅
⋅ 2.0 ⋅ ⋅
⋅ ⋅ 3.0 ⋅
⋅ ⋅ ⋅ 4.0

Approximating a Solution

We are now ready to approximate a solution to a linear two-point boundary-
value problem using finite differences.

Each person will solve a different boundary value problem. In particu-
lar, your individualized problem will consist of different values a, b, α, and
β for the boundary conditions and different functions p(x), r(x) and q(x)
for the differential equation. Click on the following link to retrieve your
boundary value problem

https://fractal.math.unr.edu/~ejolson/467-23/ab/mkab.cgi

Please do not use anyone else’s differential equation for this lab.

The rest of this lab consists of a walk through demonstrating how to use
the finite differences to approximate a solution of this differential equation.
When I clicked on the link I obtained

5

https://fractal.math.unr.edu/~ejolson/467-23/ab/mkab.cgi

Computer Lab 05 Finite Differences

Create a subdirectory called lab05 and create the file finite.jl in that
directory using gedit or some other program editor. Begin by defining the
functions and parameters in the problem. Also load the LinearAlgebra and
SparseArrays libraries as we will be using them later.

1 using LinearAlgebra,SparseArrays
2

3 p(x)=-0.80
4 q(x)=1.18+0.27*x^2
5 r(x)=sin(1.43*x)
6 a=0.92
7 b=3.05
8 alpha=0.82
9 beta=0.22

When performing numerical computations, it can be easy to lose track
of what output corresponds to which input. Let’s use the Symbolics library
to print out the details of the differential equation before solving it.

11 using Symbolics
12

6

Computer Lab 05 Finite Differences

13 @variables x
14 println("p(x)=",p(x))
15 println("q(x)=",q(x))
16 println("r(x)=",r(x))
17 println("y($a)=",alpha)
18 println("y($b)=",beta)

At this point it would be reasonable to test the program by opening
a terminal window, changing to the lab05 subdirectory, starting Julia and
then typing include("finite.jl"). The output should look similar to

julia> include("finite.jl")
p(x)=-0.8
q(x)=1.18 + 0.27(x^2)
r(x)=sin(1.43x)
y(0.92)=0.82
y(3.05)=0.22

Again, including the problem being solved as part of the output helps avoid
errors. While there is not much room for getting the output of one program
confused with another in a laboratory activity such as this one, such things
are surprisingly important in practice.

Next, specify how many grid points will be used for the computation.
Take m = 32 which is hopefully large enough. For extra credit you may
perform a convergence study for your problem by repeating the calculation
for different values of m and checking how fast the solution converges as m
increases. What is the observed order of convergence?

We now create the matrix A and vector c needed for the equation
Ay = c to solve for y. Since c is easier to construct first do that.

20 m=32
21 h=(b-a)/(m+1)
22 x=a.+(1:m)*h
23 c=-h^2*r.(x)
24 c[1]+=alpha+h/2*p(x[1])*alpha
25 c[m]+=beta-h/2*p(x[m])*beta

7

Computer Lab 05 Finite Differences

Note that c is built in stages. Line 24 initializes the entire vector with the
term −h2rk. Then line 25 adds the boundary term α + h

2 p1α to the first

entry and line 26 adds β − h
2 pmβ to the last.

The matrix A may be created in a similar way by initializing the diag-
onal and then adding supradiagonal and subdiagonal with loops.

27 A=sparse(1:m,1:m,2.0.+h^2*q.(x))

28 for i=1:m-1

29 A[i,i+1]=-1+h/2*p(x[i])

30 end
31 for i=2:m

32 A[i,i-1]=-1-h/2*p(x[i])

33 end

Finding the approximation yk for k = 1, 2, . . . ,m can now be performed
with the command y=A\c which uses the built-in matrix libraries of Julia
to efficiently solve the sparse linear algebra problem.

To finish this lab please print out the value of y16 and draw a graph of
the final approximation for your individualized differential equation. Code
to do this for the example problem follows:

35 y=A\c

36 println("y(",x[16],")=",y[16])

37 using Plots

38 plot(x,y,label="m=$m")

39 scatter!([a,b],[alpha,beta],label="boundary")

Once everything works, use the command savefig("graph05.pdf") to
save the graph. It should look similar to

8

Computer Lab 05 Finite Differences

If your graph looks exactly like the above figure, that may mean you forgot
to change the differential equation to the individual one downloaded from
the link mentioned earlier.

Submitting Your Work

Two things should be uploaded for grading:

• A pdf file lorenz.pdf containing the code finite.jl and the output
from running that code.

• The graph graph05.pdf corresponding to your boundary value problem.

The file graph05.pdf can be created by adding savefig("graph05.pdf") to
the end of your program. The only thing left is to convert lorenz.jl and
its output into a pdf file for upload. In the lab the commands

$ julia finite.jl >finite.out
$ j2pdf -o finite.pdf finite.jl finite.out

may be used to produce a file finite.pdf suitable for uploading. You may
check your submission using evince to view the pdf files.

Before leaving don’t forget to close the applications open on your desk-
top and logout. Exit the Julia repl by typing ⟨ctrl⟩-d and then ⟨ctrl⟩-d
again to close the terminal. The editor has a menu at the top. If using one
of the lab computers, please reboot it into Microsoft Windows.

9

using LinearAlgebra,SparseArrays

p(x)=-0.80
q(x)=1.18+0.27*x^2
r(x)=sin(1.43*x)
a=0.92
b=3.05
alpha=0.82
beta=0.22

using Symbolics

@variables x
println("p(x)=",p(x))
println("q(x)=",q(x))
println("r(x)=",r(x))
println("y($a)=",alpha)
println("y($b)=",beta)

m=32
h=(b-a)/(m+1)
x=a.+(1:m)*h
c=-h^2*r.(x)
c[1]+=alpha+h/2*p(x[1])*alpha
c[m]+=beta-h/2*p(x[m])*beta

A=sparse(1:m,1:m,2.0.+h^2*q.(x))
for i=1:m-1
	A[i,i+1]=-1+h/2*p(x[i])
end
for i=2:m
	A[i,i-1]=-1-h/2*p(x[i])
end

y=A\c
println("y(",x[16],")=",y[16])
using Plots
plot(x,y,label="m=$m")
scatter!([a,b],[alpha,beta],label="boundary")
#savefig("graph05.pdf")

