Programming Assignment Three


\def\R{{\bf R}}
\hangindent\parindent
\item{5a.}  
The data in the file{\tt\ file05a.dat }was normally distributed
with unit variance around a specific instance of the linear model
$$
	F_a(x)=\sum_{i=0}^3 a_i x^i.$$
Use the least squares method to find the values
of the parameters $a_i$ that maximize the likelihood of the data.
Estimate the errors in the parameters.
\medskip
\item{5b.}
The data in the file{\tt\ file05b.dat }was normally distributed
with unit variance around a specific instance of the linear model
$$
	G_b(x)=\sum_{i=0}^3 b_i\cos\big(x\sqrt i\big).$$
Use the least squares method to find the values
of the parameters $b_i$ that maximize the likelihood of the data.
Estimate the errors in the parameters.
\medskip
\item{5c.}
Use $G_b(x)$ to model the data in{\tt\ file05a.dat }and
$F_a(x)$ to model the data in{\tt\ file05b.dat}.
Plot the data and the model for each of the above cases.
What can be said about the goodness of fit?


Last Updated: Mon Mar 19 23:06:32 PST 2001