Section 2 Problem 16 in Greenspan and Casulli

The answer given in Greenspan and Casulli for problem 16 on page 72 is different than the answer I obtain using a Maple worksheet to solve the normal equations. The last graph compares my answer (in green) and the book's answer (in blue) with the data.
    |\^/|     Maple V Release 5 (University of Nevada, Reno)
._|\|   |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
 \  MAPLE  /  reserved. Maple and Maple V are registered trademarks of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
> with(linalg);
Warning, new definition for norm
Warning, new definition for trace
[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol,
    addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout,
    blockmatrix, charmat, charpoly, cholesky, col, coldim, colspace, colspan,
    companion, concat, cond, copyinto, crossprod, curl, definite, delcols,
    delrows, det, diag, diverge, dotprod, eigenvals, eigenvalues, eigenvectors,
    eigenvects, entermatrix, equal, exponential, extend, ffgausselim, fibonacci,
    forwardsub, frobenius, gausselim, gaussjord, geneqns, genmatrix, grad,
    hadamard, hermite, hessian, hilbert, htranspose, ihermite, indexfunc,
    innerprod, intbasis, inverse, ismith, issimilar, iszero, jacobian, jordan,
    kernel, laplacian, leastsqrs, linsolve, matadd, matrix, minor, minpoly,
    mulcol, mulrow, multiply, norm, normalize, nullspace, orthog, permanent,
    pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim,
    rowspace, rowspan, rref, scalarmul, singularvals, smith, stackmatrix,
    submatrix, subvector, sumbasis, swapcol, swaprow, sylvester, toeplitz,
    trace, transpose, vandermonde, vecpotent, vectdim, vector, wronskian]

> Digits:=10;
                                  Digits := 10

> alpha:=[.02802,.03040,.03247,.02850,.02900,.02497,
>         .02447,.02856,.02566];
alpha :=

    [.02802, .03040, .03247, .02850, .02900, .02497, .02447, .02856, .02566]

> R:=[2910.0,1860.0,1380.0,1100.0,910.0,780.0,680.0,600.0,540.0];

    R := [2910.0, 1860.0, 1380.0, 1100.0, 910.0, 780.0, 680.0, 600.0, 540.0]

> A:=matrix([seq([1,R[i],R[i]^2]*alpha[i],i=1..9)]);

                        [.02802    81.538200    237276.1620]
                        [.03040    56.544000    105171.8400]
                        [.03247    44.808600    61835.86800]
                        [.02850    31.350000    34485.00000]
                   A := [.02900    26.390000    24014.90000]
                        [.02497    19.476600    15191.74800]
                        [.02447    16.639600    11314.92800]
                        [.02856    17.136000    10281.60000]
                        [.02566    13.856400    7482.456000]

> At:=transpose(A);

At :=
    [.02802 , .03040 , .03247 , .02850 , .02900 , .02497 , .02447 , .02856 ,
    .02566]
    [81.538200 , 56.544000 , 44.808600 , 31.350000 , 26.390000 , 19.476600 ,
    16.639600 , 17.136000 , 13.856400]
    [237276.1620 , 105171.8400 , 61835.86800 , 34485.00000 , 24014.90000 ,
    15191.74800 , 11314.92800 , 10281.60000 , 7482.456000]

> N:=multiply(At,A);

                [.0071132223      8.855819304        14674.62379   ]
                [                                                  ]
                [                                                8 ]
           N := [8.855819304      14674.62379      .3054356919 10  ]
                [                                                  ]
                [                             8                  11]
                [14674.62379    .3054356919 10     .7347121346 10  ]

> Y:=[seq(log(alpha[i])*alpha[i],i=1..9)];

Y := [-.1001669254, -.1061967052, -.1112889344, -.1013987590, -.1026733240,
    -.09214130197, -.09079122213, -.1015521669, -.09398801047]

> b:=multiply(At,Y);
                b := [-.02535049158, -31.39518107, -51954.66367]

> Ni:=inverse(N);

              [ 2921.158092       -4.071088893         .001108987934  ]
              [                                                       ]
              [                                                     -5]
        Ni := [-4.071088893       .006179512782      -.1755826157 10  ]
              [                                                       ]
              [                                -5                  -9 ]
              [.001108987934    -.1755826157 10      .5220441467 10   ]

> c:=multiply(Ni,b);

                    [                                        -6]
               c := [-3.85731585, .00042053945, -.11153721 10  ]

> T1:=solve({c[1]=log(A0*exp(-B0*C0^2)),c[2]=2.0*B0*C0,c[3]=-B0},
>       {A0,B0,C0});
                                 -6
       T1 := {B0 = .1115372100 10  , C0 = 1885.197998, A0 = .03140099228}

> P:=[seq([R[i],alpha[i]],i=1..9)];

P := [[2910.0, .02802], [1860.0, .03040], [1380.0, .03247], [1100.0, .02850],
    [910.0, .02900], [780.0, .02497], [680.0, .02447], [600.0, .02856],
    [540.0, .02566]]

> f:=unapply(subs(T1,A0*exp(-B0*(x-C0)^2)),x);
                                                  -6                  2
        f := x -> .03140099228 exp(-.1115372100 10   (x - 1885.197998) )

> g:=x->3.05*10^(-2)*exp(-2.63*10^(-8)*(x-2880)^2);
                                                     -7           2
           g := x -> .03050000000 exp(-.2630000000 10   (x - 2880) )

> plot([P,f(x),g(x)],x=500..3000);

> Ef:=sum((alpha[i]-f(R[i]))^2,i=1..9);
                             Ef := .00002291952637

> Eg:=sum((alpha[i]-g(R[i]))^2,i=1..9);
                             Eg := .00003772393277
> quit
bytes used=2063172, alloc=1441528, time=3.38