
1. [Kincaid and Cheney Problem 6.8#6] Show that the Hilbert matrix with elements
aij = (i + j + 1)−1 for i, j = 0, 1, 2, . . . , n − 1 is a Gram matrix for the functions
1, x, x2, . . . , xn−1.

We define the inner product

〈f, g〉 =
∫ 1

0

f(x)g(x) dx

on the space of functions L2
(

[0, 1];R
)

and note that

1, x, x2, . . . , xn−1 ∈ L2
(

[0, 1];R
)

.

The corresponding Gram matrix has elements

〈xi, xj〉 =
∫ 1

0

xi+j dx =
1

i+ j + 1
xi+j+1

∣

∣

∣

1

0

=
1

i+ j + 1

which are the entries of the Hilbert matrix.
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2. [Kincaid and Cheney Problem 6.8#8] In the three-term recurrence relation for the
orthogonal polynomials, assume that the inner product is

〈f, g〉 =
∫ a

−a

f(x)g(x)w(x)dx

where w is an even function. Prove that an = 0 for all n. Prove that pn is even if n
is even and that pn is odd if n is odd.

By definition p0 = 1 which is even. Moreover

a1 =
〈xp0, p0〉
〈p0, p0〉

=

∫ a

−a
x dx

∫ a

−a
1 dx

= 0

and consequently p1 = x− a1 = x is odd. It further follows that

a2 =
〈xp1, p1〉
〈p1, p1〉

=

∫ a

−a
x3 dx

∫ a

−a
x2 dx

= 0.

We now procede by induction which can be stated as follows:

Suppose pk is even if k is even and that pk is odd if k is odd for all
k < n, then pn is even if n is even and pn is odd if n is odd.

Notice no matter whether k is even or odd that the function x
(

pk(x)
)2

is odd. This can
be seen by the following two equalities:

Case k is even:
(−x)

(

pk(−x)
)2

= −x
(

pk(x)
)2

Case k is odd:
(−x)

(

pk(−x)
)2

= −x
(

− pk(x)
)2

= −x
(

pk(x)
)2

Therefore

an =
〈xpn−1, pn−1〉
〈pn−1, pn−1〉

=

∫ a

−a
x
(

pn−1(x)
)2

dx
∫ a

−a

(

pn−1(x)
)2

dx
= 0

and consequently

pn(x) = (x− an)pn−1(x)− bnpn−2(x)xpn−1(x)− bnpn−2(x).

We now consider the case when n is even and n odd separately.

Case n is odd: By the induction hypothesis pn−1 is even and pn−1 is odd. It follows that
xpn−1(x) is odd and therefore pn(x), being the sum of two odd functions, is again odd.

Case n is even: By the induction hypothesis pn−1 is odd and pn−1 is even. It follows that
xpn−1(x) is even and therefore pn(x), being the sum of two even functions, is again even.

This completes the induction and the proof.
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3. [Kincaid and Cheney Problem 6.8#21] Derive these Legendre polynomials:

p3(x) = x3 − 3

5
x

p4(x) = x4 − 6

7
x2 + 3

35

p5(x) = x5 − 10

9
x3 + 5

21
x

I wrote a Maple script to implement the calculation given as Theorem 5 in Kincaid and
Cheney on page 400. The script is

1 # Kincaid and Cheney Problem 6.8 # 21

2 # Written December 4 by Eric Olson for Math 761

3 restart;

4 kernel(printbytes=false):

5 l2prod:=(f,g)->int(f*g,x=-1..1);

6 p[0]:=1;

7 a[1]:=l2prod(x*p[0],p[0])/l2prod(p[0],p[0]);

8 p[1]:=x-a[1];

9 for n from 2 to 5 do

10 a[n]:=l2prod(x*p[n-1],p[n-1])/l2prod(p[n-1],p[n-1]);

11 b[n]:=l2prod(x*p[n-1],p[n-2])/l2prod(p[n-2],p[n-2]);

12 p[n]:=sort(collect((x-a[n])*p[n-1]-b[n]*p[n-2],x));

13 od;

and the output is

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

# Kincaid and Cheney Problem 6.8 # 21

# Written December 4 by Eric Olson for Math 761

> restart;

> kernel(printbytes=false):

> l2prod:=(f,g)->int(f*g,x=-1..1);

1

/

|

l2prod := (f, g) -> | f g dx

|

/

-1

> p[0]:=1;

p[0] := 1

> a[1]:=l2prod(x*p[0],p[0])/l2prod(p[0],p[0]);

a[1] := 0

> p[1]:=x-a[1];

p[1] := x

> for n from 2 to 5 do
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> a[n]:=l2prod(x*p[n-1],p[n-1])/l2prod(p[n-1],p[n-1]);

> b[n]:=l2prod(x*p[n-1],p[n-2])/l2prod(p[n-2],p[n-2]);

> p[n]:=sort(collect((x-a[n])*p[n-1]-b[n]*p[n-2],x));

> od;

a[2] := 0

b[2] := 1/3

2

p[2] := x - 1/3

a[3] := 0

b[3] := 4/15

3

p[3] := x - 3/5 x

a[4] := 0

b[4] := 9/35

4 2

p[4] := x - 6/7 x + 3/35

a[5] := 0

16

b[5] := --

63

5 3

p[5] := x - 10/9 x + 5/21 x

> quit

bytes used=753184, alloc=655240, time=0.10
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4. [Kincaid and Cheney Problem 6.9#2] Find the best approximation of
√
x by a first-

degree polynomial on the interval [0, 1].

In light of Corollary 2 in Kincaid and Cheney page 408 and Example 1 on the preceding
page we solve the following system of equations:

g(0)− f(0) = δ

g(ξ)− f(ξ) = −δ

g(1)− f(1) = δ

g′(ξ)− f ′(ξ) = 0

where g(x) = ax+ b and f(x) =
√
x. The Maple script

1 # Kincaid and Cheney Problem 6.9 # 2

2 # Written December 4 by Eric Olson for Math 761

3 restart;

4 kernel(printbytes=false):

5 eq1:=g(0)-f(0)=delta;

6 eq2:=g(xi)-f(xi)=-delta;

7 eq3:=g(1)-f(1)=delta;

8 eq4:=D(g)(xi)-D(f)(xi)=0;

9 g:=x->a*x+b;

10 f:=sqrt;

11 eqns:={eq1,eq2,eq3,eq4};

12 S:=solve(eqns,{a,b,xi,delta});

13 g1:=subs(S,g(x));

solves these equations. The best approximation is

f(x) = x+ 1/8

which has a graph

0.60.40.2

1

0

0.6

0.4

x

0.2

10.8

0.8

0

The Maple output follows:

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.
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# Kincaid and Cheney Problem 6.9 # 2

# Written December 4 by Eric Olson for Math 761

> restart;

> kernel(printbytes=false):

> eq1:=g(0)-f(0)=delta;

eq1 := g(0) - f(0) = delta

> eq2:=g(xi)-f(xi)=-delta;

eq2 := g(xi) - f(xi) = -delta

> eq3:=g(1)-f(1)=delta;

eq3 := g(1) - f(1) = delta

> eq4:=D(g)(xi)-D(f)(xi)=0;

eq4 := D(g)(xi) - D(f)(xi) = 0

> g:=x->a*x+b;

g := x -> a x + b

> f:=sqrt;

f := sqrt

> eqns:={eq1,eq2,eq3,eq4};

eqns :=

1/2 1

{b = delta, a xi + b - xi = -delta, a + b - 1 = delta, a - ------- = 0}

1/2

2 xi

> S:=solve(eqns,{a,b,xi,delta});

S := {b = 1/8, a = 1, xi = 1/4, delta = 1/8}

> g1:=subs(S,g(x));

g1 := x + 1/8

> quit

bytes used=1419008, alloc=1179432, time=0.14
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5. [Kincaid and Cheney Problem 6.9#3] Show that the subspaces in C[0, 1] spanned by
these sets are Haar subspaces:

A = {1, x2, x3}, B = {1, ex, e2x}, C = {(x+ 2)−1, (x+ 3)−1, (x+ 4)−1}.

Let a + bx2 + cx3 be in the span of A. Claim that this element has at most two roots in
the interval [−1, 1]. if c = 0 then a + bx2 clearly has at most two roots. If c 6= 1 we may
consider the polynmial α+ βx+ x3 were α = a/c and β = b/c. Suppose for contradiction
there were three distinct roots 0 ≤ x1 < x2 < x3 ≤ 1 such that

α+ βx2 + x3 = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3.

Equating coefficients we obtain 0 = x1x2+x1x3+x2x3 ≥ x2x3 > 0 which is a contradiction.

Let a + bex + ce2x be in the span of B. Writing w = ex we may consider the polynomial
a+ bw+ cw2 which has at most 2 roots w1 and w2. Since the function x → ex is injective
on [0, 1] there are at most two numbers x1 and x2 such that w1 = ex1 and w2 = ex2 . It
follows that a+ bex + ce2x = 0 has at most 2 solutions.

Let a(x+2)−1+b(x+3)−1+c(x+4)−1 be in the span of C. Finding a common denominator
shows this expression is equal to

a(x+ 3)(x+ 4) + b(x+ 2)(x+ 4) + c(x+ 2)(x+ 3)

(x+ 1)(x+ 2)(x+ 3)
=

p(x)

(x+ 1)(x+ 2)(x+ 3)

for some polynomial p(x) of degree less than or equal 2. Since p(x) has at most 2 roots
than a(x+ 2)−1 + b(x+ 3)−1 + c(x+ 4)−1 = 0 has at most 2 solutions.
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6. [Kincaid and Cheney Problem 6.9#4] Show that the subspaces in C[−1, 1] spanned
by these sets are Haar subspaces:

A = {1, x2, x3}, B = {|x|, |x− 1|}, C = {ex, x+ 1}.

We consider again the equation x1x2 + x1x3 + x2x3 = 0 from part A of the previous
problem and this equation has solutions such that −1 ≤ x1 < x2 < x3 ≤ 1. In particular,
if x2 = 1/2 and x3 = 1/3, then

x1 =
−x2x3

x2 + x3

= −1

5
∈ [−1, 1].

Therefore the span of A is not a Haar subspace.

Consider the function f(x) = 2|x| − |x− 1| in the span of B. Clearly f(1) = 2− 1 = 0 and
f(1/3) = 2/3− | − 2/3| = 0 therefore B is not a Haar subspace.

Consider the function f(x) = 1 + x− 4

5
ex. Since

f(−1) = −4

5
e−1 < 0

f(0) = 1− 4

5
> 0

f(1) = 2− 4

5
e < 4− 4

5
(2.7) < 0,

then by the intermediate value property of continuous functions there must be points x1

and x2 such that

−1 < x1 < 0 < x2 < 1 and f(x1) = f(x2) = 0.

Therefore C is not a Haar subspace.
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7. [Kincaid and Cheney Problem 6.9#8] Prove the quadratic polynomial of best approx-
imation to the function coshx on the interval [−1, 1] is a + bx2 where b = cosh 1 − 1
and a is obtained by simultaneously solving for a and t in the system

{

2a = 1 + cosh t− t2b

sinh t = 2tb.

Define f(x) = coshx. First we claim the quadratic polynomial that best approximates f
on the interval [−1, 1] is of the form a+bx2. Let F = {a+bx2 : a, b ∈ R}, G = {cx : x ∈ R}
and P2 = {a+ cx+ bx2 : a, b, c ∈ R}. Let a, b and c be chosen so that

∥

∥f − (a+ cx2 + bx2)
∥

∥ = min
{

‖f − g‖ : g ∈ P2

}

.

Define f2(x) = coshx−(a+bx2). Since f2(x) is even then x ∈ crit(f2) implies −x ∈ crit(f2)
and moreover f2(x) and f2(−x) have the same sign. Thus, there is no function inG that has
the same signs as f2 on crit(f2). It follows that Kolmogorov’s Characterization Theorem
from Kincaid and Cheney page 407 implies ‖f2‖ = dist(f2, G). In particular

∥

∥f2 − (a+ cx2 + bx2)
∥

∥ = dist(f2, G) = ‖f2‖

and therefore there is a function of the form a+ bx2 such that
∥

∥f − (a+ bx2)
∥

∥ = min
{

‖f − g‖ : g ∈ P2

}

.

Now make the change of variables y =
√
x. To obtain the following equivalent minimization

problem: Find a+ by that best approximates the function cosh
√
y on the interval [0, 1].

This problem is in the form covered by Corollary 2 from Kincaid and Cheney page 408 so
we may obtain the solution by solving the system of equations:

g3(0)− f3(0) = δ

g3(ξ)− f3(ξ) = −δ

g3(1)− f3(1) = δ

g′3(ξ)− f ′

3(ξ) = 0

where g3(y) = a+ by and f3(y) = cosh
√
y. Simplifying obtains

a− 1 = δ

a+ bξ − cosh
√

ξ = −δ

a+ b− cosh 1 = δ

2b
√

ξ − sinh
√

ξ = 0

Elimination of δ from the 2nd and 3rd equation, setting t =
√
ξ and futher simplification

obtains the desired result
2a = 1 + cosh t− t2b

b = cosh 1− 1

sinh t = 2bt.
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