1. [Kincaid and Cheney Problem 6.8\#6] Show that the Hilbert matrix with elements $a_{i j}=(i+j+1)^{-1}$ for $i, j=0,1,2, \ldots, n-1$ is a Gram matrix for the functions $1, x, x^{2}, \ldots, x^{n-1}$.

We define the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

on the space of functions $L^{2}([0,1] ; \mathbf{R})$ and note that

$$
1, x, x^{2}, \ldots, x^{n-1} \in L^{2}([0,1] ; \mathbf{R})
$$

The corresponding Gram matrix has elements

$$
\left\langle x^{i}, x^{j}\right\rangle=\int_{0}^{1} x^{i+j} d x=\left.\frac{1}{i+j+1} x^{i+j+1}\right|_{0} ^{1}=\frac{1}{i+j+1}
$$

which are the entries of the Hilbert matrix.
2. [Kincaid and Cheney Problem 6.8\#8] In the three-term recurrence relation for the orthogonal polynomials, assume that the inner product is

$$
\langle f, g\rangle=\int_{-a}^{a} f(x) g(x) w(x) d x
$$

where w is an even function. Prove that $a_{n}=0$ for all n. Prove that p_{n} is even if n is even and that p_{n} is odd if n is odd.

By definition $p_{0}=1$ which is even. Moreover

$$
a_{1}=\frac{\left\langle x p_{0}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle}=\frac{\int_{-a}^{a} x d x}{\int_{-a}^{a} 1 d x}=0
$$

and consequently $p_{1}=x-a_{1}=x$ is odd. It further follows that

$$
a_{2}=\frac{\left\langle x p_{1}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle}=\frac{\int_{-a}^{a} x^{3} d x}{\int_{-a}^{a} x^{2} d x}=0
$$

We now procede by induction which can be stated as follows:
Suppose p_{k} is even if k is even and that p_{k} is odd if k is odd for all $k<n$, then p_{n} is even if n is even and p_{n} is odd if n is odd.
Notice no matter whether k is even or odd that the function $x\left(p_{k}(x)\right)^{2}$ is odd. This can be seen by the following two equalities:

Case k is even:

$$
(-x)\left(p_{k}(-x)\right)^{2}=-x\left(p_{k}(x)\right)^{2}
$$

Case k is odd:

$$
(-x)\left(p_{k}(-x)\right)^{2}=-x\left(-p_{k}(x)\right)^{2}=-x\left(p_{k}(x)\right)^{2}
$$

Therefore

$$
a_{n}=\frac{\left\langle x p_{n-1}, p_{n-1}\right\rangle}{\left\langle p_{n-1}, p_{n-1}\right\rangle}=\frac{\int_{-a}^{a} x\left(p_{n-1}(x)\right)^{2} d x}{\int_{-a}^{a}\left(p_{n-1}(x)\right)^{2} d x}=0
$$

and consequently

$$
p_{n}(x)=\left(x-a_{n}\right) p_{n-1}(x)-b_{n} p_{n-2}(x) x p_{n-1}(x)-b_{n} p_{n-2}(x) .
$$

We now consider the case when n is even and n odd separately.
Case n is odd: By the induction hypothesis p_{n-1} is even and p_{n-1} is odd. It follows that $x p_{n-1}(x)$ is odd and therefore $p_{n}(x)$, being the sum of two odd functions, is again odd.
Case n is even: By the induction hypothesis p_{n-1} is odd and p_{n-1} is even. It follows that $x p_{n-1}(x)$ is even and therefore $p_{n}(x)$, being the sum of two even functions, is again even.
This completes the induction and the proof.
3. [Kincaid and Cheney Problem 6.8\#21] Derive these Legendre polynomials:

$$
\begin{aligned}
& p_{3}(x)=x^{3}-\frac{3}{5} x \\
& p_{4}(x)=x^{4}-\frac{6}{7} x^{2}+\frac{3}{35} \\
& p_{5}(x)=x^{5}-\frac{10}{9} x^{3}+\frac{5}{21} x
\end{aligned}
$$

I wrote a Maple script to implement the calculation given as Theorem 5 in Kincaid and Cheney on page 400 . The script is

```
# Kincaid and Cheney Problem 6.8 # 21
# Written December 4 by Eric Olson for Math 761
restart;
kernel(printbytes=false):
l2prod:=(f,g)->int(f*g,x=-1..1);
p[0]:=1;
a[1]:=12prod(x*p[0],p[0])/12prod(p[0],p[0]);
p[1]:=x-a[1];
for n from 2 to 5 do
    a[n]:=12prod(x*p[n-1],p[n-1])/12prod(p[n-1],p[n-1]);
    b[n]:=12prod(x*p[n-1],p[n-2])/l2prod}(p[n-2],p[n-2])
    p[n]:=sort(collect((x-a[n])*p[n-1]-b[n]*p[n-2],x));
od;
```

and the output is

```
    |\^/| Maple 9.5 (IBM INTEL LINUX)
._|\| |/I_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004
\ MAPLE / All rights reserved. Maple is a trademark of
<_--- ---_> Waterloo Maple Inc.
    Type ? for help.
# Kincaid and Cheney Problem 6.8 # 21
# Written December 4 by Eric Olson for Math 761
> restart;
> kernel(printbytes=false):
> l2prod:=(f,g)->int(f*g,x=-1..1);
    l2prod := (f,g) -> )
> p[0]:=1;
    p[0] := 1
> a[1]:=12prod(x*p[0],p[0])/l2prod(p[0],p[0]);
    a[1] := 0
> p[1]:=x-a[1];
    p[1] := x
> for n from 2 to 5 do
```

```
> a[n]:=l2prod(x*p[n-1],p[n-1])/l2prod(p[n-1],p[n-1]);
> b[n]:=12prod(x*p[n-1],p[n-2])/l2prod(p[n-2],p[n-2]);
> p[n]:=sort(collect((x-a[n])*p[n-1]-b[n]*p[n-2],x));
> od;
```

```
                    a[2] := 0
```

 a[2] := 0
 b[2] := 1/3
 b[2] := 1/3
 2
 2
 p[2] := x - 1/3
 p[2] := x - 1/3
 a[3] := 0
 a[3] := 0
 b[3] := 4/15
 b[3] := 4/15
 3
 3
 p[3] := x - 3/5x
 p[3] := x - 3/5x
 a[4] := 0
 a[4] := 0
 b[4] := 9/35
 b[4] := 9/35
 p[4] := x 4 - 6/7 x + + 3/35
 p[4] := x 4 - 6/7 x + + 3/35
 a[5] := 0
 a[5] := 0
 b[5] := --
 b[5] := --
 6 3
 6 3
 5 3
 5 3
 p[5] := x - 10/9x + 5/21 x
    ```
                            p[5] := x - 10/9x + 5/21 x
```

> quit
bytes used $=753184$, alloc $=655240$, time $=0.10$
4. [Kincaid and Cheney Problem 6.9\#2] Find the best approximation of \sqrt{x} by a firstdegree polynomial on the interval $[0,1]$.

In light of Corollary 2 in Kincaid and Cheney page 408 and Example 1 on the preceding page we solve the following system of equations:

$$
\begin{array}{r}
g(0)-f(0)=\delta \\
g(\xi)-f(\xi)=-\delta \\
g(1)-f(1)=\delta \\
g^{\prime}(\xi)-f^{\prime}(\xi)=0
\end{array}
$$

where $g(x)=a x+b$ and $f(x)=\sqrt{x}$. The Maple script

```
# Kincaid and Cheney Problem 6.9 # 2
# Written December 4 by Eric Olson for Math 761
restart;
kernel(printbytes=false):
eq1:=g(0)-f(0)=delta;
eq2:=g(xi)-f(xi)=-delta;
eq3:=g(1)-f(1)=delta;
eq4:=D(g)(xi)-D(f)(xi)=0;
g:=x->a*x+b;
f:=sqrt;
eqns:={eq1,eq2,eq3,eq4};
S:=solve(eqns,{a,b,xi,delta});
g1:=subs(S,g(x));
```

solves these equations. The best approximation is

$$
f(x)=x+1 / 8
$$

which has a graph

The Maple output follows:

| ハへ/1 | Maple 9.5 (IBM INTEL LINUX) | |
|---|---|---|
| _l\\| l/I_. | Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004 |
| \ MAPLE / | All rights reserved. Maple is a trademark of |
| > | Waterloo Maple Inc. |
| | Type ? for help. |

```
\# Kincaid and Cheney Problem 6.9 \# 2
\# Written December 4 by Eric Olson for Math 761
> restart;
> kernel (printbytes=false):
> eq1:=g(0)-f(0)=delta;
                                eq1 \(:=g(0)-f(0)=\) delta
> eq2:=g(xi)-f(xi)=-delta;
    eq2 := g(xi) -f(xi) = -delta
> eq3:=g(1)-f(1)=delta;
                                eq3 \(:=\mathrm{g}(1)-\mathrm{f}(1)=\) delta
\(>\) eq4:=D(g)(xi)-D(f)(xi)=0;
eq4 \(:=D(g)(x i)-D(f)(x i)=0\)
> g:=x->a*x+b;
\[
\mathrm{g}:=\mathrm{x} \rightarrow \mathrm{a} \mathrm{x}+\mathrm{b}
\]
> f:=sqrt;
f := sqrt
\(>\) eqns: \(=\{\) eq1, eq2, eq3, eq4\};
eqns :=
                                \(1 / 2 \quad 1\)
    \(\{b=\operatorname{delta}, \mathrm{a} x i+b-x i=-\operatorname{delta}, \mathrm{a}+\mathrm{b}-1=\operatorname{delta}, \mathrm{a}-\ldots-----0\}\)
                                    1/2
                                    2 xi
> S:=solve(eqns, \{a, b, xi, delta\});
\[
\mathrm{S}:=\{\mathrm{b}=1 / 8, \mathrm{a}=1, \mathrm{xi}=1 / 4, \text { delta }=1 / 8\}
\]
\(>g 1:=\operatorname{subs}(S, g(x))\);
\[
\text { g1 }:=x+1 / 8
\]
> quit
bytes used=1419008, alloc=1179432, time=0.14
```

5. [Kincaid and Cheney Problem 6.9\#3] Show that the subspaces in $C[0,1]$ spanned by these sets are Haar subspaces:

$$
A=\left\{1, x^{2}, x^{3}\right\}, \quad B=\left\{1, e^{x}, e^{2 x}\right\}, \quad C=\left\{(x+2)^{-1},(x+3)^{-1},(x+4)^{-1}\right\} .
$$

Let $a+b x^{2}+c x^{3}$ be in the span of A. Claim that this element has at most two roots in the interval $[-1,1]$. if $c=0$ then $a+b x^{2}$ clearly has at most two roots. If $c \neq 1$ we may consider the polynmial $\alpha+\beta x+x^{3}$ were $\alpha=a / c$ and $\beta=b / c$. Suppose for contradiction there were three distinct roots $0 \leq x_{1}<x_{2}<x_{3} \leq 1$ such that

$$
\begin{aligned}
\alpha+\beta x^{2}+x^{3} & =\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& =x^{3}-\left(x_{1}+x_{2}+x_{3}\right) x^{2}+\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) x-x_{1} x_{2} x_{3} .
\end{aligned}
$$

Equating coefficients we obtain $0=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \geq x_{2} x_{3}>0$ which is a contradiction. Let $a+b e^{x}+c e^{2 x}$ be in the span of B. Writing $w=e^{x}$ we may consider the polynomial $a+b w+c w^{2}$ which has at most 2 roots w_{1} and w_{2}. Since the function $x \rightarrow e^{x}$ is injective on $[0,1]$ there are at most two numbers x_{1} and x_{2} such that $w_{1}=e^{x_{1}}$ and $w_{2}=e^{x_{2}}$. It follows that $a+b e^{x}+c e^{2 x}=0$ has at most 2 solutions.

Let $a(x+2)^{-1}+b(x+3)^{-1}+c(x+4)^{-1}$ be in the span of C. Finding a common denominator shows this expression is equal to

$$
\frac{a(x+3)(x+4)+b(x+2)(x+4)+c(x+2)(x+3)}{(x+1)(x+2)(x+3)}=\frac{p(x)}{(x+1)(x+2)(x+3)}
$$

for some polynomial $p(x)$ of degree less than or equal 2 . Since $p(x)$ has at most 2 roots than $a(x+2)^{-1}+b(x+3)^{-1}+c(x+4)^{-1}=0$ has at most 2 solutions.
6. [Kincaid and Cheney Problem 6.9\#4] Show that the subspaces in $C[-1,1]$ spanned by these sets are Haar subspaces:

$$
A=\left\{1, x^{2}, x^{3}\right\}, \quad B=\{|x|,|x-1|\}, \quad C=\left\{e^{x}, x+1\right\} .
$$

We consider again the equation $x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=0$ from part A of the previous problem and this equation has solutions such that $-1 \leq x_{1}<x_{2}<x_{3} \leq 1$. In particular, if $x_{2}=1 / 2$ and $x_{3}=1 / 3$, then

$$
x_{1}=\frac{-x_{2} x_{3}}{x_{2}+x_{3}}=-\frac{1}{5} \in[-1,1] .
$$

Therefore the span of A is not a Haar subspace.
Consider the function $f(x)=2|x|-|x-1|$ in the span of B. Clearly $f(1)=2-1=0$ and $f(1 / 3)=2 / 3-|-2 / 3|=0$ therefore B is not a Haar subspace.
Consider the function $f(x)=1+x-\frac{4}{5} e^{x}$. Since

$$
\begin{array}{r}
f(-1)=-\frac{4}{5} e^{-1}<0 \\
f(0)=1-\frac{4}{5}>0 \\
f(1)=2-\frac{4}{5} e<4-\frac{4}{5}(2.7)<0
\end{array}
$$

then by the intermediate value property of continuous functions there must be points x_{1} and x_{2} such that

$$
-1<x_{1}<0<x_{2}<1 \quad \text { and } \quad f\left(x_{1}\right)=f\left(x_{2}\right)=0
$$

Therefore C is not a Haar subspace.
7. [Kincaid and Cheney Problem 6.9\#8] Prove the quadratic polynomial of best approximation to the function $\cosh x$ on the interval $[-1,1]$ is $a+b x^{2}$ where $b=\cosh 1-1$ and a is obtained by simultaneously solving for a and t in the system

$$
\left\{\begin{aligned}
2 a & =1+\cosh t-t^{2} b \\
\sinh t & =2 t b .
\end{aligned}\right.
$$

Define $f(x)=\cosh x$. First we claim the quadratic polynomial that best approximates f on the interval $[-1,1]$ is of the form $a+b x^{2}$. Let $F=\left\{a+b x^{2}: a, b \in \mathbf{R}\right\}, G=\{c x: x \in R\}$ and $P_{2}=\left\{a+c x+b x^{2}: a, b, c \in \mathbf{R}\right\}$. Let a, b and c be chosen so that

$$
\left\|f-\left(a+c x^{2}+b x^{2}\right)\right\|=\min \left\{\|f-g\|: g \in P_{2}\right\}
$$

Define $f_{2}(x)=\cosh x-\left(a+b x^{2}\right)$. Since $f_{2}(x)$ is even then $x \in \operatorname{crit}\left(f_{2}\right)$ implies $-x \in \operatorname{crit}\left(f_{2}\right)$ and moreover $f_{2}(x)$ and $f_{2}(-x)$ have the same sign. Thus, there is no function in G that has the same signs as f_{2} on $\operatorname{crit}\left(f_{2}\right)$. It follows that Kolmogorov's Characterization Theorem from Kincaid and Cheney page 407 implies $\left\|f_{2}\right\|=\operatorname{dist}\left(f_{2}, G\right)$. In particular

$$
\left\|f_{2}-\left(a+c x^{2}+b x^{2}\right)\right\|=\operatorname{dist}\left(f_{2}, G\right)=\left\|f_{2}\right\|
$$

and therefore there is a function of the form $a+b x^{2}$ such that

$$
\left\|f-\left(a+b x^{2}\right)\right\|=\min \left\{\|f-g\|: g \in P_{2}\right\} .
$$

Now make the change of variables $y=\sqrt{x}$. To obtain the following equivalent minimization problem: Find $a+b y$ that best approximates the function $\cosh \sqrt{y}$ on the interval $[0,1]$.
This problem is in the form covered by Corollary 2 from Kincaid and Cheney page 408 so we may obtain the solution by solving the system of equations:

$$
\begin{aligned}
g_{3}(0)-f_{3}(0) & =\delta \\
g_{3}(\xi)-f_{3}(\xi) & =-\delta \\
g_{3}(1)-f_{3}(1) & =\delta \\
g_{3}^{\prime}(\xi)-f_{3}^{\prime}(\xi) & =0
\end{aligned}
$$

where $g_{3}(y)=a+b y$ and $f_{3}(y)=\cosh \sqrt{y}$. Simplifying obtains

$$
\begin{aligned}
a-1 & =\delta \\
a+b \xi-\cosh \sqrt{\xi} & =-\delta \\
a+b-\cosh 1 & =\delta \\
2 b \sqrt{\xi}-\sinh \sqrt{\xi} & =0
\end{aligned}
$$

Elimination of δ from the 2 nd and 3rd equation, setting $t=\sqrt{\xi}$ and futher simplification obtains the desired result

$$
\begin{aligned}
2 a & =1+\cosh t-t^{2} b \\
b & =\cosh 1-1 \\
\sinh t & =2 b t .
\end{aligned}
$$

