
Chapter 1

Mathematical Preliminaries

De�nition (Limit). The limit L of a function (if it exists) at c is given by lim
x→c

f(x) = L which means that

to each ε > 0 there is a corresponding δ > 0 such that | f(x)− L |< ε whenever 0 <| x− c |< δ.

De�nition (Continuity). A function f is said to be continuous at c if lim
x→c

f(x) = f(c).

De�nition (Derivative). The derivative of a function f at c (if it exists) is de�ned by f ′(c) = lim
x→c

f(x)−f(c)
x−c .

If f ′(c) exists then f is said to be di�erentiable at c.

De�nition (Linear Rate of Convergence). Let [xn] be a sequence of real numbers tending to a limit x?.
We say that the rate of convergence is at least linear if there is a constant c < 1 and an N ∈ Z such that
| xn+1 − x? |≤ c | xn − x? | for n ≥ N .

De�nition (Superlinear Rate of Convergence). Let [xn] be a sequence of real numbers tending to a limit
x?. We say that the rate of convergence is at least superlinear if there exists a sequence εn tending to 0 and
an N ∈ Z such that | xn+1 − x? |≤ εn | xn − x? | for n ≥ N .

Note a sequence that has superlinear rate of convergence also has linear rate of convergence.

De�nition (Quadratic Rate of Convergence). Let [xn] be a sequence of real numbers tending to a limit x?.
We say that the rate of convergence is at least quadratic if there is a constant C and an N ∈ Z such that
| xn+1 − x? |≤ C | xn − x? |2 for n ≥ N .

In general, if there are positive constants C and α and N ∈ Z such that | xn+1− x? |≤ C | xn− x? |α for
n ≥ N , then we say that the rate of convergence is of order α at least.

Remark. Quadratic convergences ⇒ Superlinear convergence ⇒ Linear convergence

De�nition (Big O Notation for Sequences). Let [xn] and [αn] be two di�erent sequences. We write xn =
O(αn) if there are constants C and n0 such that |xn| ≤ C |αn| when n ≥ n0.

De�nition (Little o Notation for Sequences). Let [xn] and [αn] be two di�erent sequences. We write
xn = o(αn) if for some εn ≥ 0 we have εn → 0 and |xn| ≤ εn |αn|.

De�nition (Big O Notation for Functions). We write f(x) = O(g(x)) as x → x? when there is a constant
C and a δ > 0 such that |f(x)| ≤ C |g(x)| for |x− x?| < δ.

f(x) = O(g(x)) as x → ∞ means there exists constants C and r such that |f(x)| ≤ C |g(x)| whenever
x ≥ r.

Fact (Least Upper Bound Axiom). Any nonempty set of real numbers that possesses an upper bound has a

least upper bound.

De�nition (Supremum (Least Upper Bound)). v is said to be the supremum of S, written v = supS = lub S,
if and only if
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CHAPTER 1. MATHEMATICAL PRELIMINARIES 2

1. v is an upper bound for S and

2. no real number smaller than v is an upper bound for S.

De�nition (In�mum (Greatest Lower Bound)). u is said to be the in�mum of S, written u = inf S = glb S,
if and only if

1. u is a lower bound for S and

2. no real number greater than u is a lower bound for S.

De�nition (Shift/Displacement Operator). Let x = [x1, x2, . . . ] be a vector (or sequence). Then a shift/displacement
operator denoted by E is de�ned as (Ex)n = xn+1. Example, Ex = [x2, x3, . . . ] where x = [x1, x2, . . . ].

Repeated application of E gives (Ekx)n = xn+k. Example, (EEx)n = xn+2.

De�nition (Linear Di�erence Operator). A linear di�erence operator L is de�ned as L =
m∑
i=0

ciE
i. Here

E0 is the identity operator, i.e. (E0x)n = (Ix)n = xn. Since L is a polynomial in E, it can be written as

L = p(E) where the polynomial p is called the characteristic polynomial of L and is de�ned by p(λ) =
m∑
i=0

ciλ
i.

The equation Lx = 0 is called a linear di�erence equation.

De�nition (Stable Di�erence Equation). A di�erence equation of the form p(E)x = 0 is said to be stable
if all of its solutions are bounded.



Chapter 2

Computer Arithmetic

De�nition (Normalized Scienti�c Notation). Any real number x is written in a decimal form by shifting
all of its digits to the right of the decimal point (so that only 0 remains before the decimal point) and using
appropriate powers of 10 (in base 10). In base 10, the �rst digit displayed is not 0. Such a representation
of a real number is called normalized scienti�c notation. Examples: 732.5051 = 0.7325051 × 103 and
−0.005612 = −0.5612× 10−2.

In base 2, scienti�c notation is of the form x = ±q × 2m. The number q is called the mantissa and the
integer m is called the exponent. Both q and m are base 2 numbers.

De�nition (Left-shifted normalized binary number). is such that the �rst nonzero bit in the mantissa is
just before the binary point, i.e. q = (1.f)2. This bit can be assumed to be 1 and does not require storage.

De�nition (Normalized Floating Point Form). Any real number x expressed as (−1)s×qm where q = (1.f)2,
m = e−127 and s is the bit representing the sign of x (positive: bit 0, negative: bit 1) is called a normalized
�oating point form.

When a real number x is approximated by another number x?, the

1. error is x− x?.

2. absolute error is |x− x?|.

3. relative error is

∣∣∣∣x− x?x

∣∣∣∣.
De�nition (Unit Roundo� Error). The bound of the relative error is called the unit roundo� error.

De�nition (Conditioning). A problem is ill conditioned if small changes in the data can produce large
changes in the answers. Otherwise the problem is called well conditioned.

De�nition (Condition Number for a Function). Consider a function f evaluated at a point x. If x is

perturbed slightly then the e�ect on f(x) is given by
xf ′(x)

f(x)
. This factor is called the condition number.

De�nition (Condition Number for Linear Systems). Condition number of a matrix A, denoted κ(A), is
κ(A) = ‖A‖ ·

∥∥A−1∥∥ where ‖·‖ is the norm of the matrix. In solving linear systems Ax = b, this condition
number studies how small perturbations in b a�ects the computed solution x. It is always true that κ(A) ≥ 1.
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Chapter 3

Solution of Nonlinear Equations

De�nition (Bisection (Interval Halving) Method). Let f be a continuous function on [a, b]. A consequence
of the Intermediate-Value Theorem is that if f(a)f(b) < 0 then f must have a zero in (a, b).

The bisection method exploits this idea in the following way. If f(a)f(b) < 0 then compute c = a+b
2

and test whether f(a)f(c) < 0. If this is true, then f has at least one zero in [a, c]. So rename c as b and
start again with the new interval [a, b], which is half as large as the original interval. If f(a)f(c) > 0 then
f(c)f(b) < 0, and in this case rename c as a. In either case, a new interval containing a zero of f has been
produced, and the process can be repeated. If f(a)f(c) = 0 then f(c) = 0 and a zero has been found.

Look at Figure 3.2(a) and (b) on page 75 to understand why the bisection method only �nds one zero
but not all of them in [a, b].

De�nition (Newton's Method). Let f be the function whose zeros are to be determined numerically. Let r
be a zero of f and let x be an approximation to r. If f ′′ exists and is continuous, then by Taylor's Theorem,

0 = f(r) = f(x+ h) = f(x) + hf ′(x) +O(h2)

where h = r− x. If h is small (that is, x is near r), then it is reasonable to ignore the O(h2) term and solve

the remaining equation for h. When this is done, h = − f(x)
f ′(x) . If x is an approximation to r, then x− f(x)

f ′(x)

should be a better approximation to r.

Newton's method begins with an estimate x0 of r and then de�nes inductively xn+1 = xn− f(xn)
f ′(xn)

, n ≥ 0.

De�nition. Newton's method is faster than the bisection and the secant methods since its convergence is
quadratic rather than linear or superlinear. Unfortunately, this method is not guaranteed always to converge.
Look at Figure 3.4 on page 83 to understand the graphical interpretation of Newton's method.

De�nition (Secant Method). One of the drawbacks of Newton's method is that it involves the derivative

of the funnction whose zero is sought. So, replace f ′(xn) by f(xn)−f(xn−1)
xn−xn−1

which comes from the limit

de�nition of a derivative. This resulting algorithm is called the secant method and its formula is xn+1 =

xn − f(xn)
(

xn−xn−1

f(xn)−f(xn−1)

)
, n ≥ 1.

De�nition (Quadratic Convergence). Let en = xn − r be the error where r is simple zero of f and xn is
the sequence. Then en+1 = Ce2n for some constant C is called quadratic convergence.

De�nition (Functional Iteration). Functional iteration is given by xn+1 = F (xn), n ≥ 0. For example, in

Newton's method, the function F is given by F (x) = x− f(x)
f ′(x) .

De�nition (Fixed Point). Assume lim
n→∞

xn exists, and is equal to s. If the functional iteration F is continuous

then F (s) = F ( lim
n→∞

xn) = lim
n→∞

F (xn) = lim
n→∞

xn+1 = s. Thus, F (s) = s, and s is called a �xed point of F .
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De�nition (Contractive Mapping). A mapping (or function) F is said to be contractive if there exists a
number λ < 1 such that |F (x)− F (y)| ≤ λ |x− y| for all points x and y in the domain of F . Look at Figure
3.7, page 101, for a graphical interpretation.

De�nition (Cauchy Criterion). Let [xn] be a sequence. Given any ε, there exists an integer N such that
|xn − xm| < ε whenever n,m ≥ N .

De�nition (Horner's Algorithm). If p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 and a complex number z0
are given, then Horner's algorithm produces the number p(z0) and the polynomial q(z) = p(z)−p(z0)

z−z0 whose

degree is one less than the degree of p. So, write q(z) = b0 + b1z + · · · + bn−1z
n−1. Substituting p(z) and

the new form of q(z) into the equation p(z) = (z− z0)q(z) + p(z0) (which is obtained from the original form
of q(z)), and then setting the coe�cients of like powers equal to each other from both sides of the equation
gives,

bn−1 = an

bn−2 = an−1 + z0bn−1

...

b0 = a1 + z0b1

p(z0) = a0 + z0b0.

In compact form, Horner's algorithm can be written as

an an−1 · · · a0
z0 z0bn−1 z0b0

bn−1 bn−2 · · · a0 + z0b0
The boxed number is the value of p(z0).

De�nition (Laguerre Iteration). Let p be a polynomial of degree n. Then this algorithm proceeds iteratively
from one approximate root z to a new one by calculating

A = −p
′(z)

p(z)

B =
A2 − p′′(z)

p(z)

C =
A±

√
(n− 1)(nB −A2)

n

znew = z +
1

C

In the de�nition of C, the sign of C is chosen such that |C| as large as possible.
De�nition (Basin of Attraction). If Newton's method is started at a point z in the complane plane, it
produces a sequence de�ned by the equations{

z0 = z

zn+1 = zn − p(zn)
p′(zn)

where n ≥ 0. If lim
n→∞

zn = ξ, we say that z (the starting point) is attracted to ξ. The set of all points z that

are attracted to ξ is called the basin of attraction corresponding to ξ.

Every root of p has a basin of attraction, and these are mutually disjoint sets because a sequence that
converges to one root of p cannot converge to another root.

De�nition (Homotopy). A homotopy between two functions f, g : X → Y is a continuous map h : [0, 1]×
X → Y such that h(0, x) = g(x) and h(1, x) = f(x). If such a map exists, then f is said to be homotopic to
g.

Homotopy forms an equivalence relation among the continuous maps from X to Y , where X and Y are
any two topological spaces. Read page 135 to see how homotopy relates to Newton's method.



Chapter 4

Solving Systems of Linear Equations

De�nition (Symmetric Matrix). means AT = A.

De�nition (Diagonally Dominant Matrix). satis�es the inequality |aii| >
n∑

j=1,j 6=i
|aij | for 1 ≤ i ≤ n. Exam-

ple,


4 −1 0 −1
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

.
De�nition (Tridiagonal Matrix). aij = 0 for all pairs (i, j) that satisfy |i− j| > 1. Thus, in the ith row,
only ai,i−1, aii, ai,i+1 can be di�erent from 0.

De�nition (Vector Norm). A norm is a function ‖·‖ from a vector space V to the set of nonnegative reals
that obeys the following three properties:

1. ‖x‖ > 0 if x 6= 0, x ∈ V

2. ‖λx‖ = |λ| ‖x‖ if λ ∈ R, x ∈ V

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ if x,y ∈ V

De�nition (Euclidean l2-Norm). is de�ned as ‖x‖2 =

(
n∑
i=1

x2i

) 1
2

where x = (x1, x2, . . . , xn)
T ∈ Rn.

De�nition (l∞-Norm). ‖x‖∞ = max
1≤i≤n

|xi|

De�nition (l1- Norm). ‖x‖1 =
n∑
i=1

|xi|

De�nition (Matrix Norm Subordinate to a Vector Norm). If a vector norm ‖·‖ has been speci�ed, the
matrix norm subordinate to it is de�ned by ‖A‖ = sup {‖Au‖ : u ∈ Rn, ‖u‖ = 1}. This is also called the
matrix norm associated with the given vector norm. Here, A is an n× n matrix.

De�nition (l2-matrix norm/Spectral Norm and Spectral Radius). There are two de�nitions:

1. l2-matrix norm/Spectral Norm is de�ned as ‖A‖2 = sup
‖x‖2=1

‖Ax‖2. This is the matrix norm subordinate

to the Euclidean vector norm. In fact, ‖A‖2 = max
1≤i≤n

|σi| where σi are the singular values of A. If

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, then Av1 = σ1u1 and ATu1 = σ1v1. Hence, ATAv1 = σ2
1v1. So σ2

1 is the
largest eigenvalue of ATA. Thus, the 2-matrix norm is de�ned as ‖A‖2 =

√
ρ(ATA) where ρ(ATA) is

the spectral radius of ATA and is the largest eigenvalue of ATA.
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2. The eigenvalues of a matrix A are the complex numbers λ for which the matrix A−λI is not invertible.
These numbers are then the roots of the characteristic equation of A: det(A − λI) = 0. The spectral

radius of A is de�ned by ρ(A) = max {|λ| : det(A− λI) = 0}.

De�nition (Normed Linear Space). If a vector space V is assigned a norm ‖·‖, then the pair (V, ‖·‖) is a
normed linear space.

De�nition (Vector Convergence). A given sequence of vectors v(1), v(2), . . . is said to converge to a vector
v if lim

k→∞

∥∥v(k) − v∥∥ = 0.

De�nition (Iterative Re�nement). Suppose that Ax = b has been solved by Gaussian elimination and x(0) is
an approximate solution. Compute the residual vector r(0) = b−Ax(0) in double precision, and Ae(0) = r(0)

where e(0) = A−1(b − Ax(0)) is the error vector, and the next iteration x(1) = x(0) + e(0). To obtain better
solutions x(2), x(3), . . . , this process can be repeated. The sequence of vectors x(m) converge to x.

De�nition (Row and Column Equilibrium). is the process of dividing each row of the coe�cient matrix
by the maximum element in absolute value in that row; that is, mulitplying row i by ri =

1
max

1≤j≤n
|ai,j | for

1 ≤ i ≤ n. Column equilibrium is similar except division is done columnwise, that is, mulitply column j by
cj =

1
max

1≤i≤n
|ai,j | for 1 ≤ j ≤ n.

De�nition (Similar Matrix). A matrix A is said to be similar to a matrix B if there is a nonsingular matrix
S such that S−1AS = B.

De�nition (Positive De�nite). There are two de�nitions:

1. The matrix A is positive de�nite if xTAx > 0 for all nonzero vector x.

2. A matrix A is said to be positive de�nite if 〈Ax, x〉 > 0 for all x 6= 0.

De�nition (Orthogonal Vectors). Vectors u and v are orthogonal if 〈u, v〉 = 0.

De�nition (Orthonormal Vectors). Vectors u and v are orthogonal if 〈vi, vj〉 = δij .

De�nition (A-orthonormality). Assume A is an n × n symmetric and positive de�nite matrix. Suppose
that a set of vectors

{
u(1), u(2), . . . , u(n)

}
is provided and has the property 〈u(i), Au(j)〉 = δij (1 ≤ i, j ≤ n).

This property is called A-orthonormality.



Chapter 5

Selected Topics in Numerical Linear

Algebra

De�nition (Unitary/Hermitian Matrix). Consider a matrix U such that UU? = I. If F = C then U? =
(
U
)T

and U is called a unitary matrix. If F = R then U? = UT and U is called a Hermitian matrix. In both cases,
UU? = I implies that U? = U−1.

De�nition (Unitarily Similar). Matrices A and B are unitarily similar if B = UAU? for some unitary
matrix U .
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Chapter 6

Approximating Functions

De�nition (Interpolating Polynomial). Given a table of n + 1 data points (x0, y0), . . . , (xn, yn), we seek
a polynomial p of lowest possible degree for which p(xi) = yi (0 ≤ i ≤ n). Such a polynomial is said to
interpolate the data.

De�nition (Interpolating Polynomial in Newton's Form). is pk(x) =
k∑
i=0

ci
i−1∏
j=0

(x − xj). If i − 1 < 0, then

i−1∏
j=0

(x − xj) = 1. The coe�cients ci = f [x0, x1, . . . , xi] is found by the method of Divided Di�erences. The

polynomials in the product can be found by Horner's algorithm/nested multiplication. A pseudocode for
this is on page 310.

De�nition (Lagrange Form of the Interpolating Polynomial). The (Lagrange form) of the interpolating

polynomial is expressed as p(x) =
n∑
k=0

yklk(x) where l0, l1, . . . , ln are polynomials that depend on the (distinct)

nodes x0, x1, . . . , xn but not on the ordinates y0, y1, . . . , yn. The ordinates are set to be li(xj) = δij ={
1 i = j

0 i 6= j
. Then, a general form of the polynomials li is li(x) =

n∏
j=0,j 6=i

x−xj

xi−xj
(0 ≤ i ≤ n). (For example,

setting x = x0 gives that l0(x0) = 1.) The set of nodes x0, x1, . . . , xn is called the cardinal functions.

De�nition (Vandermonde Matrix). Given a vector x = (x0, x1, . . . , xn), the Vandermonde matrix is
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
...

1 xn x2n · · · xnn


According to Problem 6.1.34 (p.327), the determinant of this matrix is

∏
0≤j<k≤n

(xk − xj). This determinant

is nonzero, and therefore, this matrix is nonsingular. Thus, the system

p(x) = a0 + a1x+ · · ·+ anx
n

=


1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
...

1 xn x2n · · · xnn



a0
a1
...
an

 =


y0
y1
...
yn


has a unique solution for any choice of y0, y1, . . . , yn. However, the Vandermonde matrix is often ill condi-
tioned, and the coe�cients ai may be inaccurately determined.
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De�nition (Chebyshev Polynomials). (of the �rst kind) are de�ned recursively as follows:
T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), (n ≥ 1)

De�nition (Hermite Interpolation). refers to the interpolation of a function and some of its derivatives at
a set of nodes.

De�nition (Lagrange Interpolation). refers to the interpolation of a function where no derivatives are
interpolated at a set of nodes.

De�nition (Spline Function of Degree k). Suppose that n+ 1 points t0, t1, . . . , tn (called knots) have been
speci�ed and satisfy t0 < t1 < · · · < tn. Suppose also that an integer k ≥ 0 has been prescribed. A spline
function of degree k having knots t0, t1, . . . , tn is a function S such that:

1. On each interval [ti−1, ti), S is a polynomial of degree ≤ k.

2. S has a continuous (k − 1)st derivative on [t0, tn].

De�nition (Tension Spline). is a function f having the following properties:

1. f ∈ C2[t0, tn]

2. The interpolation conditions f(ti) = yi hold for 0 ≤ i ≤ n.

3. On each open interval (ti−1, ti), f satis�es f (4) − τ2f ′′ = 0.

De�nition (Truncated Power Function). is a function of continuity class Cn−1 de�ned as

{
xn x ≥ 0

0 x < 0
.

De�nition (Modulus of Continuity). for a function f (continuous or not) is de�ned to be ω(f ; δ) =
max
|s−t|≤δ

|f(s)− f(t)|.

De�nition (B-Splines of Degree 0). is de�ned to be B0
i (x) =

{
1 ti ≤ x < ti+1

0 otherwise
where i ∈ Z. Its graph is

on page 366. Its properties are:

1. The support of B0
i , de�ned as the set of x where B0

i (x) 6= 0, is the interval [ti, ti+1).

2. B0
i (x) ≥ 0 for all i and all x.

3. B0
i is continuous from the right on the entire real line.

4.
∞∑

i=−∞
B0
i (x) = 1 for all x.

De�nition (B-Splines of Degree 1). is de�ned to be

B1
i (x) =

(
x− ti
ti+1 − ti

)
B0
i (x) +

(
ti+2 − x
ti+2 − ti+1

)
B0
i+1(x)

=


0 x < ti or x ≥ ti+2

x−ti
ti+1−t1 ti ≤ x ≤ ti+1

ti+2−x
ti+2−ti+1

ti+1 ≤ x < ti+2

Its graph is on page 368. Its properties are:

1. The support of B1
i is (ti, ti+2).
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2. B1
i (x) ≥ 0 for all i and all x.

3. B1
i is continuous and is di�erentiable at every point except ti, ti+1, and ti+2.

4.
∞∑

i=−∞
B1
i (x) = 1 for all x.

De�nition (Radius of Convergence). For every power series
∞∑
k=0

ak(x− c)k, there is a number r in the range

[0,∞] such that the series diverges for |x− c| > r and converges for |x− c| < r. This number r is called the
radius of convergence.

De�nition (Critical Set of a Function). The critical set of a function f in the space of all continuous
real-valued functions C(X) is crit(f) = {x ∈ X : |f(x)| = ‖f‖} where ‖f‖ = dist(f,G) and G is a �nite-
dimensional subspace in C(X).

De�nition (Convex Combinations). Linear combinations of vectors of the form
k∑
i=1

θiui are called convex

combinations when
k∑
i=1

θi = 1 and θi ≥ 0.

De�nition (Convex Hull). The set of all convex combinations of points selected from a given set S is called

the convex hull of S. Thus, co(S) =

{
k∑
i=1

θiui : k ∈ N, ui ∈ S, θi ≥ 0,
k∑
i=1

θi = 1

}
.

De�nition (Convex Set). A set K in a linear space is said to be convex if it contains every line segment
connecting two points of K. Thus, for u, v ∈ K and 0 ≤ θ ≤ 1, θu+ (1− θ)v ∈ K.

De�nition (Haar Subspace). An n-dimensional subspace G in C(X) is called a Haar subspace if no element
of G (except 0) has n or more zeros in X.


