Math 701 Final Version A

1. Answer one of the following questions:
(i) For $x \in \mathbf{R}^{n}$ and $A \in \mathbf{R}^{n \times n}$ prove that $\|A\|_{2}=\rho\left(A^{T} A\right)^{1 / 2}$.
(ii) Prove every nonconstant polynomial has at least one root in \mathbf{C}.

Math 701 Final Version A

2. Answer one of the following questions:
(i) Suppose $A \in \mathbf{R}^{n \times n}$ is symmetric and positive definite. Prove that the problem of solving $A x=b$ is equivalent to the problem of minimizing the quadratic form $q(x)=\langle x, A x\rangle-2\langle x, b\rangle$.
(ii) Let $f^{\prime \prime}$ be continuous and let r be a simple zero of f. Prove there is a neighborhood of r and a constant C such that if Newton's method is started in that neighborhood, the successive points become steadily closer to r and satisfy $\left|x_{n+1}-r\right| \leq C\left(x_{n}-r\right)^{2}$ for $n \in \mathbf{N}$.

Math 701 Final Version A

3. Let $A \in \mathbf{R}^{n \times n}$ and $b, x \in \mathbf{R}^{n}$ such that $A x=b$. Given $\tilde{x} \in \mathbf{R}^{n}$ prove that

$$
\frac{1}{\kappa(A)} \frac{\|b-A \tilde{x}\|}{\|b\|} \leq \frac{\|x-\tilde{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-A \tilde{x}\|}{\|b\|}
$$

where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$.

Math 701 Final Version A

4. Prove one of the following lemmata:

Lemma 1. The matrix $I-v v^{*}$ is unitary if and only if $\|v\|_{2}^{2}=2$ or $v=0$.

Lemma 2. Let x and y be two vectors such that $\|x\|_{2}=\|y\|_{2}$ and $\langle x, y\rangle$ is real. Then there exists a unitary matrix U of the form $I-v v^{*}$ such that $U x=y$

Math 701 Final Version A

5. Let f be a function in $C^{n+1}[a, b]$ and let p be the polynomial of degree at most n that interpolates the function f at $n+1$ distinct points $x_{0}, x_{1}, \ldots, x_{n}$ in the interval $[a, b]$. Prove that to each x in $[a, b]$ there corresponds a point ξ_{x} in (a, b) such that

$$
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Math 701 Final Version A

6. Describe the Gram Schmidt algorithm and explain how it can be used to find a family of polynomials $\left\{p_{k}: k=0,1, \ldots, n\right\}$ where each p_{k} has degree less than or equal to k and

$$
\int_{0}^{1} p_{i}(x) p_{j}(x)\left(x^{2}+1\right) d x= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Math 701 Final Version A

7. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $x_{i} \in \mathbf{R}$ for $i=0, \ldots, k$. Consider the polynomial p_{k} given by

$$
p_{k}(x)=\sum_{i=0}^{k} c_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

where c_{i} have been chosen so $p_{k}\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0, \ldots, k$. Explain how to use Newton's divided difference formula to find the c_{i}.

Math 701 Final Version A

8. Define what it means for a matrix to be positive definite.
9. Define a Haar subspace.
10. Describe how to solve the equation $a x^{2}+b x+c=0$ using the quadratic formula in a way that minimizes rounding error and loss of precision.
