Conjugate Gradient Method

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.

1. The $n \times n$ Hilbert matrix H is defined as the matrix with entries

$$
h_{i j}=\frac{1}{i+j-1} \quad \text { where } \quad i, j=1,2, \ldots, n .
$$

Prove for any $n \in \mathbf{N}$ that H is symmetric and positive definite.
2. Let w be a vector of length n given by

$$
w_{i}=\frac{1}{3} \quad \text { where } \quad i=1,2, \ldots, n .
$$

Write a subroutine that computes $H w$ without storing the entire matrix H into memory. Write a program to find $w \cdot H w$ for $n=10^{k}$ where $k=1,2,3,4$. The output from your program should look something like

k	n	w. Hw
1	10	$1.486158673723173 \mathrm{e}+00$
2	100	$1.534785401070720 \mathrm{e}+01$
3	1000	$1.539771651244306 \mathrm{e}+02$
4	10000	$1.540271513744324 \mathrm{e}+03$

3. Write a program that solves $H x=b$ by the conjugate gradient method. Test your program for $n=1000$ by choosing $b=H w$ where w is the vector given above and $x=0$ as the initial guess for x. The output should look sometime like

k	$\|\mathrm{w}-\mathrm{x}\|$	$\|\mathrm{b}-\mathrm{Ax}\|$
0	$1.054092553389460 \mathrm{e}+01$	$1.698808462143129 \mathrm{e}+01$
1	$5.489846287694768 \mathrm{e}+00$	$4.406748857997090 \mathrm{e}+00$
2	$3.456551995574104 \mathrm{e}+00$	$1.170268545385278 \mathrm{e}+00$
3	$2.122967238170827 \mathrm{e}+00$	$2.607637508249531 \mathrm{e}-01$
\ldots	\ldots	\ldots
50	$3.406923944634312 \mathrm{e}-04$	$1.256784027692001 \mathrm{e}-10$

4. What happens when one tries to use the conjugate gradient method to solve $A x=b$ when A is not symmetric or positive definite?
5. Let A be an invertible matrix. Prove $B=A^{T} A$ is symmetric and positive definite.
6. Consider the following method for solving $A x=b$ when A is an arbitrary invertible matrix. Multiply both sides by A^{T} to obtain

$$
B x=c \quad \text { where } \quad B=A^{T} A \quad \text { and } \quad c=A^{T} b .
$$

Then solve $B x=c$ using the conjugate gradient method. Test this method on some interesting matrices A which are neither symmetric nor positive definite.

