.

Conjugate Gradient Method

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.

1. The $n \times n$ Hilbert matrix H is defined as the matrix with entries

$$h_{ij} = \frac{1}{i+j-1}$$
 where $i, j = 1, 2, \dots, n.$

Prove for any $n \in \mathbf{N}$ that H is symmetric and positive definite.

2. Let w be a vector of length n given by

$$w_i = \frac{1}{3}$$
 where $i = 1, 2, ..., n$.

Write a subroutine that computes Hw without storing the entire matrix H into memory. Write a program to find $w \cdot Hw$ for $n = 10^k$ where k = 1, 2, 3, 4. The output from your program should look something like

k	n	w.Hw
1	10	1.486158673723173e+00
2	100	1.534785401070720e+01
3	1000	1.539771651244306e+02
4	10000	1.540271513744324e+03

3. Write a program that solves Hx = b by the conjugate gradient method. Test your program for n = 1000 by choosing b = Hw where w is the vector given above and x = 0 as the initial guess for x. The output should look sometime like

k	w-x	b-Ax
0	1.054092553389460e+01	1.698808462143129e+01
1	5.489846287694768e+00	4.406748857997090e+00
2	3.456551995574104e+00	1.170268545385278e+00
3	2.122967238170827e+00	2.607637508249531e-01
••		
50	3.406923944634312e-04	1.256784027692001e-10

- 4. What happens when one tries to use the conjugate gradient method to solve Ax = b when A is not symmetric or positive definite?
- 5. Let A be an invertible matrix. Prove $B = A^T A$ is symmetric and positive definite.
- 6. Consider the following method for solving Ax = b when A is an arbitrary invertible matrix. Multiply both sides by A^T to obtain

$$Bx = c$$
 where $B = A^T A$ and $c = A^T b$.

Then solve Bx = c using the conjugate gradient method. Test this method on some interesting matrices A which are neither symmetric nor positive definite.