Math 701 Quiz 1 Version A
INSTRUCTIONS: Complete 3 questions out of the 6 questions below. Clearly indicate which problems you wish graded. Work each problem on a separate sheet of paper (or more if necessary).

1. For $x \in \mathbf{R}^{n}$ and $A \in \mathbf{R}^{n \times n}$ define

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \\
\|A\|_{2} & =\max \left\{\|A x\|_{2}:\|x\|=1\right\}
\end{aligned}
$$

and

$$
\rho(A)=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\}
$$

Prove that $\|A\|_{2}=\rho\left(A^{T} A\right)^{1 / 2}$.
2. Prove that every nonconstant polynomial has at least one root in the complex field.
3. Let $A \in \mathbf{R}^{n \times n}$ be a symmetric positive definite matrix and $\left\{u^{(1)}, u^{(2)}, \ldots, u^{(n)}\right\}$ be a collection of vectors in \mathbf{R}^{n} such that

$$
u^{(i)} \cdot A u^{(j)}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Let $x^{(0)} \in \mathbf{R}^{n}$ be arbitrary and define

$$
x^{(i)}=x^{(i-1)}+\left\langle b-A x^{(i-1)}, u^{(i)}\right\rangle u^{(i)} \quad \text { for } \quad i=1,2, \ldots, n
$$

Prove that $A x^{(n)}=b$.
4. Suppose $A \in \mathbf{R}^{n \times n}$ is symmetric and positive definite. Prove that the problem of solving $A x=b$ is equivalent to the problem of minimizing the quadratic form

$$
q(x)=\langle x, A x\rangle-2\langle x, b\rangle
$$

5. Let $f^{\prime \prime}$ be continuous and let r be a simple zero of f. Prove there is a neighborhood of r and a constant C such that if Newton's method is started in that neighborhood, the successive points become steadily closer to r and satisfy

$$
\left|x_{n+1}-r\right| \leq C\left(x_{n}-r\right)^{2} \quad \text { for } \quad n=0,1,2,3, \ldots
$$

6. Let $A \in \mathbf{R}^{n \times n}$ and $b, x \in \mathbf{R}^{n}$ such that $A x=b$. Given $\tilde{x} \in \mathbf{R}^{n}$ prove that

$$
\frac{1}{\kappa(A)} \frac{\|b-A \tilde{x}\|}{\|b\|} \leq \frac{\|x-\tilde{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-A \tilde{x}\|}{\|b\|}
$$

where $\kappa(A)=\|A\|\left\|A^{-1}\right\|$.

