Math 701 Quiz 2 Version A
INSTRUCTIONS: Complete 2 questions out of the 2 questions below. Clearly indicate which problems you wish graded. Work each problem on a separate sheet of paper (or more if necessary).

1. Let $f$ be a function in $C^{n+1}[a, b]$ and let $p$ be the polynomial of degree at most $n$ that interpolates the function $f$ at $n+1$ distinct points $x_{0}, x_{1}, \ldots, x_{n}$ in the interval $[a, b]$. Prove that to each $x$ in $[a, b]$ there corresponds a point $\xi_{x}$ in $(a, b)$ such that

$$
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

2. Let $f$ be a function in $C^{n+1}[a, b]$. Prove for any $x$ and $c$ in the closed interval $[a, b]$

$$
f(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)(x-c)^{k}+R_{n}(x)
$$

where

$$
R_{n}(x)=\frac{1}{n!} \int_{c}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

