Math 701: Secant Method

The secant method approximates solutions to f(z) = 0 using an iterative scheme similar
to Newton’s method in which the derivative has been replace by

f/(xn) ~ f(xn) B f(mn—l).

Tpn — Tp—-1

This results in the two-term recurrence

fxn)(2n — 2n1)
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which needs a base of two different approximations zy and z; of the solution to get started.

Let p be the exact solution such that f(p) = 0 and suppose f’(p) # 0. Before proving
that z¢ and x; sufficiently close to p implies z,, — p with order o = (1 + \/3) /2, we first
derive this rate of convergence heuristically.

Intuitive Derivation of the Rate of Convergence

Define e,, = x,, — p and assume z,, — p as n — oo and further that |e,| ~ Mle,_1|* for
some constants M > 0 and o > 1.
Let € > 0 be arbitrary. By definition

Jf(xn)(2n — 2n1) f(wn)(en —en1)
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f(@n) = f(zn-1) f(xn) = f(wn-1)
. f(zy) _ f(xn_1) €n€n—1
a ( €n €n_1 )(f(xn) — f(xn_1)>
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Claim that
Tp — Tp—1 ~ 1 and f(xn)/en — f(Tn_1)/en1 ~ f"(p)
f(xn) = f(@n-1) () Tp — Tn_1 2

As this is a heuristic derivation of « there is no need to prove the above claims rigorously,
but only to justify them from an intuitive point of view.

For the first part of the claim note the mean value theorem implies there is £,, between
z,, and x,_1 such that

f(rn) = f(Xn_1) = fl(gn)(mn — Tp-1)
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It follows that f'(&,) — f/(p) since &, — p as n — oco. Therefore

Tn = Tn—l — 1 as —
n — oo.
flzn) = f(zn-1) f'(p)
Consequently, if n is large enough then
Ty — Tpn_1 1

~

f(@n) = f@a1) ~ f'(p)

and the first part of the claim has been justified.
An intuitive justification of the second part of the claim is similar, but slightly more
involved. By Taylor’s theorem there is n,, between z,, and p such that

FEn) = F0)+ (@0 = P)F'B) + 5 (n — PV 0) + 5 (e — 2" 00).

Therefore

Flea) ~ eaf'(p) + 5645 ().

This suggests that
flan)/en = flan-1)/en1 ') = F'(p) | LenS"(p) —enaf"(p) _ f"(p)

Tp — Tp—1 Tp — Tp—1 2 Tp — Tp—1 2

We are now ready to infer a plausible value for « the order of convergence of the
secant method. Combine the results of the claim with the expression for e,,_; to obtain

/" (p) ‘
2f"(p) I

lent1] = Clen|len—1| where C=

Substituting the relation |e,| ~ M|e,—1|* yields
Mlen|® ~ MY e, 1% ~ CM|en_1|*|en_1]-
Solving for M and « from the relations
MY =COM and al=a+1

obtains

f// 1/ 1+ \/5
’ and o= .
2f’ 2

This finishes our heuristic derivation of the rate of convergence of the secant method.
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Rigorous Proof of the Rate of Convergence

We assume f is twice continuously differentiable and that p is such that f(p) = 0 and
f'(p) # 0. The secant method is

Tpn — Tp—-1

f(xn) - f(xnfl).

First claim if g and x; with zg # z; are chosen close enough to p that z,, — p as n — cc.
That is, the secant method converges. Let

Tpy1 = Tn — f(2n)

_ f(e)

f(B)
Since f’(p) # 0 it follows that the limit supremum of |k(«, 8)| is zero as &« — p and 5 — p.
Therefore, there is 6 > 0 so small such that

ke, B) =1

|k(a, B)] <y <1 whenever |a—p|<d and |[B—p| <.
Choose x¢ and x; such that |zo —p| < ¢ and |z; — p| < §. By the mean-value theorem

f(xn) B f(p) — f/(an) and f(xn) — f(xn—l)

Ip — P Tpn — Tp—-1

= f/(bn)

for some a,, between x,, and p and for some b,, between x,, and x,,_1. For induction assume
|z, — p| < 0 and |z,,—1 — p| < d, in which case |a, — p| < § and |b,, — p| < §. Denoting
€, = T, — p we obtain

€n — €En—1
€n4+1 = €n — f(xn) i i

f(.fEn) - f('rn—l)
()~ F@)en —enn)
" f(xn) - f(xn—l)
e f(an)en(en —en_1) _( f'(an) .
—en = e e = (= Ry e

Therefore, |e,+1| < 7v|e,| and by induction |e, 11| < 4™|e1|. Since v < 1, it follows that
T, — p as n — oo and the secant method converges.
Claim there exists C' such that |e,11|/|enen—1| — C as n — oco. First note that

€n —€np_1
€n4+1 = €n — f(xn) z -

f(xn) - f(xn—l)
f(xn)en - f(xn—l)en + f(-fnn—l)en - f(xn)en—l

:en—

= f(@n)en—1 — f(xn_1)en _ f(zn)/en — f(ggn_l)/en_le .
f(@n) = f(Tn-1) F1(br) (@ — 1) n€n_1.




Define
A =max{ |f"(z)|: |z —p| <3}

Since f” is continuous, it follows that A < co. By Taylor’s theorem we have

f@wzf@%+f@km+/%f%®@n—ﬂﬁ

Now
n n— 1 n 1 Tn—t
f(x ) _f(x 1) :_/ f”(t)(.fl)n—t)dt— / f”(t)(:l?n_l—t)dt
€n €n—1 €n D €n—1 P
=Ji+ Js
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R= () /w £ () (2 — £)dt
b €n €n—1 P o
and
1 Tn Tn—1
Jy = (/ () (xy, — t)dt — / f' ) (w1 — t)dt)
€n—1 P P
=Js+ Jy4
Here
n - 4n— T 1 Tn
Jg = Sn = &not / Fdt and = / P (2 — t)dt.
€n—1 P €n—1 Tn—1
Estimate
1 1 Tn
<A = || [ -
€n €n—1 P
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S A’xn xn—l’ ‘enl S A €n ’xn xn—l’
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Therefore
|J1] Al ey A‘ f'(an)
S bt ) I Qi) P L bl b
|90n—50n—1\ =3l 5 f/(bn) — 0 as n — 00
Also
/3] §Ae—n—>0 as n — oo.
|xn — xn—l’ €n—1




The estimate of J4 will be done more carefully. Consider two cases: If z,,_1 < x,, then the
mean-value theorem for integrals implies

2

(xn - xn—l)Q

/ n f//(t)(t - xn—l)dt = f,/(gn) where fn € [xn—la xn]

If x,, < x,,—1 then

2

(xn—l - xn)2

/mn_l ') (1 — t)dt = f"(&) where &n € [Tn, Trn_1]-

n

In either case it holds that

T e

Tn — Tn-1 2677,71 2

Tn = Tn-1 _ f//(gn)< €n 4 1) N f"(p)

€n—1 2

as n — oo. It follows that

12
Jo — / 2(p) s n — 00
Consequently
12}
‘%—+1’—>C’ where C = / (p)‘ n — o00.
€nbn—1 2f/(p)

Claim that the secant method converges with order o. Note that

1 1 1
= q, a2—1:a, and —+— =1
a—1 a  a?

Define K,, = |ept1]/|enen—1| and M,, = |ep+1|/|en]®. Then

azat s = (el (eal ) (emsal y_ e

len]*® /N len—1]|® lenen—1]

It follows that

KTL n
M, = o and similarly M,y1 = TJ/F;
Mn—l Mn

Combining the above two inequalities implies

Kn+1 l/cy2
Mn+1:K’rll/Oé n—1 -*
Since K,, — C as n — oo then
K
Trl — Ol = g2« as n — 0.
K/
n



Since 2 — a > 0, the above limit makes sense even when f”(p) = 0. Let L =1+ C?*7“. By
the definition of limit, there exists IV large enough such that

M, < LMi/ff for all n > N.

The above inequality and the fact that 1/a? < 1 implies that the sequence M,, is bounded.
In particular, suppose Ms,,_1 > L* where 2n > N, then

1/a? 1/a+1/a>
Mani1 < LMy < Myt = My, .

Therefore My, 441 < Ma,—1 for all k € N. Similarly if My, > L* for some 2n > N, then
Ms(pqr) < Mz, for all kK € N. Having consider both even and odd terms, we conclude in
general that M} is bounded. Consequently there exists M large enough such that M,, < M
for every n € N. Thus

lent1] < Mlep|® for every neN
and so the secant method converges with order at least «.

The following references were consulted when preparing the above proof:

[1] Burden, Fairs and Burden, Numerical Analysis, Tenth Edition, hint given in for Prob-
lem 14 in Section 2.4.

[2] Dahlquist and Bjorck, Numerical Methods in Scientific Computer, Volume I, proof of
Theorem 6.2.1.



