Newton's Method

We will work on the programming part of this project in class; however, your final report should be prepared independently. Where appropriate include full program listings and output.

- 1. Consider Newton's method for solving f(x) = 0 where $f(x) = x^2 2$ using the starting point $x_0 = 1$.
 - (i) Let $e_n = x_n \sqrt{2}$ and create a table with three columns showing n, x_n and e_n for $n = 0, 1, \ldots, 8$.
 - (ii) A sign of quadratic convergence is that the number of significant digits double at each iteration. Does that happen in this case?
 - (iii) Comment on how rounding error effects the numerical convergence of Newton's method.
 - (iv) Write $|e_{n+1}| = M_n |e_n|^2$ and compute M_n for n = 1, 2, 3, and 4. In this case is M_n bigger or less than 1?
 - (v) Use multi-precision arithmetic with at least 10 000 digits precision to determine the asymptotic value of M_n when n is large. Can you also find this value analytically?
- **2.** Consider the secant method for solving f(x) = 0 where $f(x) = x^2 2$ using the starting points $x_0 = 0$ and $x_1 = 1$.
 - (i) Let $e_n = x_n \sqrt{2}$ and create a table with three columns showing n, x_n and e_n for $n = 0, 1, \ldots, 8$.
 - (ii) A sign of quadratic convergence is that the number of significant digits double at each iteration. Does that happen in this case?
 - (iii) According to Wikipedia https://en.wikipedia.org/wiki/Secant_method the order of convergence of the secant method is

$$\alpha = \frac{1+\sqrt{5}}{2} \approx 1.618,$$

which is less than quadratic. Write $|e_{n+1}| = M_n |e_n|^{\alpha}$ and compute M_n for n = 1, 2, ..., 7. In this case is M_n bigger or less than 1?

(iv) Prove that the order of convergence of the secant method is α . If you look the proof up, please cite your references and rewrite the proof in your own words.

Math 701 Programming Project 1

3. Consider the fixed point iteration for solving f(x) = 0 given by $x_{n+1} = h(x_n)$ where

$$h(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

- (i) Show that f(x) = 0 implies h(x) = x. Conversely show that if h(x) = x then either f(x) = 0 or f'(x) = 0.
- (ii) Compute h'(x) and show that

$$h'(x) = \begin{cases} 0 & \text{when } f(x) = 0 \text{ and } f'(x) \neq 0\\ 2 & \text{when } f(x) \neq 0, \ f'(x) = 0 \text{ and } f''(x) \neq 0. \end{cases}$$

Conclude that the fixed points of h for which f(x) = 0 are stable, but the fixed points for which f'(x) = 0 are not.

- (iii) Use this fixed point iteration with $x_0 = 1$ to solve f(x) = 0 where $f(x) = x^2 2$. Compare the performance of this method with your results for Newton's method.
- (iv) Suppose $f(x) = (x \xi)^m q(x)$ where $\lim_{x \to \xi} q(x) \neq 0$. Let g(x) = x f(x)/f'(x) as in Newton's method and show that

$$\lim_{x \to \xi} g'(x) = \frac{m-1}{m} \quad \text{and} \quad \lim_{x \to \xi} h'(x) = 0.$$

Conclude that even when f'(x) = 0 this method, unlike Newton's method, has an accelerating rate of convergence as x_n approaches the solution $x = \xi$ to f(x) = 0.

4. The function

$$f(x) = 2\cos(5x) + 2\cos(4x) + 6\cos(3x) + 4\cos(2x) + 10\cos(x) + 3$$

has two roots on the interval [0,3]; one root is near 1 and the other near 2.

- (i) Use Newton's method $x_{n+1} = g(x_n)$ with $x_0 = 1$ and also with $x_0 = 2$ to approximate these two roots. Use the fact that the exact roots are $\pi/3$ and $2\pi/3$ to compute the error e_n at each iteration for n = 0, 1, ..., 18.
- (ii) Use the method $x_{n+1} = h(x_n)$ with $x_0 = 1$ and again also with $x_0 = 2$ to approximate these two roots. Again use the fact that the exact roots are $\pi/3$ and $2\pi/3$ to compute the error e_n at each iteration for n = 0, 1, ..., 18.
- (iii) Comment on the rate of convergence and the effects of rounding error in the above two computations.

Math 701 Programming Project 1

5. Define

$$x_{n+1} = \frac{x_n + 2x_{n-1} + x_{n-2}}{4} - \frac{F_n F'_n}{[F'_n]^2 - F_n F''_n}$$

where

$$F_{n} = f\left(\frac{x_{n} + 2x_{n-1} + x_{n-2}}{4}\right),$$

$$F'_{n} = \frac{2}{x_{n} - x_{n-2}} \left\{ f\left(\frac{x_{n} + x_{n-1}}{2}\right) - f\left(\frac{x_{n-1} + x_{n-2}}{2}\right) \right\},$$

$$F''_{n} = \frac{2}{x_{n} - x_{n-2}} \left(\frac{f(x_{n}) - f(x_{n-1})}{x_{n} - x_{n-1}} - \frac{f(x_{n-1}) - f(x_{n-2})}{x_{n-1} - x_{n-2}}\right)$$

to create a secant-method-like approximation of the method given by h that doesn't involve f' and f''. Study this method both numerically and analytically. Test this method for the functions $f(x) = x^2 - 2$ and

$$f(x) = 2\cos(5x) + 2\cos(4x) + 6\cos(3x) + 4\cos(2x) + 10\cos(x) + 3.$$

How does this method compare to the usual secant method?

6. Consider the simplification to the above method given by

$$x_{n+1} = x_n - \frac{F_n F'_n}{[F'_n]^2 - F_n F''_n}.$$

Study this simplification both numerically and analytically. Does it work as well as the previous method? Why or why not? Consider adding a relaxation parameter $\alpha \in (0, 1)$ to obtain

$$x_{n+1} = x_n - \frac{\alpha F_n F_n'}{[F_n']^2 - F_n F_n''}.$$

Can you find a value of α which makes the scheme work better? Is there an optimal value for α ?