Newton's Method

We will work on the programming part of this project in class; however, your final report should be prepared independently. Where appropriate include full program listings and output.

1. Consider Newton's method for solving $f(x)=0$ where $f(x)=x^{2}-2$ using the starting point $x_{0}=1$.
(i) Let $e_{n}=x_{n}-\sqrt{2}$ and create a table with three columns showing n, x_{n} and e_{n} for $n=0,1, \ldots, 8$.
(ii) A sign of quadratic convergence is that the number of significant digits double at each iteration. Does that happen in this case?
(iii) Comment on how rounding error effects the numerical convergence of Newton's method.
(iv) Write $\left|e_{n+1}\right|=M_{n}\left|e_{n}\right|^{2}$ and compute M_{n} for $n=1,2,3$, and 4. In this case is M_{n} bigger or less than 1?
(v) Use multi-precision arithmetic with at least 10000 digits precision to determine the asymptotic value of M_{n} when n is large. Can you also find this value analytically?
2. Consider the secant method for solving $f(x)=0$ where $f(x)=x^{2}-2$ using the starting points $x_{0}=0$ and $x_{1}=1$.
(i) Let $e_{n}=x_{n}-\sqrt{2}$ and create a table with three columns showing n, x_{n} and e_{n} for $n=0,1, \ldots, 8$.
(ii) A sign of quadratic convergence is that the number of significant digits double at each iteration. Does that happen in this case?
(iii) According to Wikipedia https://en.wikipedia.org/wiki/Secant_method the order of convergence of the secant method is

$$
\alpha=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

which is less than quadratic. Write $\left|e_{n+1}\right|=M_{n}\left|e_{n}\right|^{\alpha}$ and compute M_{n} for $n=1,2, \ldots, 7$. In this case is M_{n} bigger or less than 1 ?
(iv) Prove that the order of convergence of the secant method is α. If you look the proof up, please cite your references and rewrite the proof in your own words.

Math 701 Programming Project 1
3. Consider the fixed point iteration for solving $f(x)=0$ given by $x_{n+1}=h\left(x_{n}\right)$ where

$$
h(x)=x-\frac{f(x) f^{\prime}(x)}{\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)} .
$$

(i) Show that $f(x)=0$ implies $h(x)=x$. Conversely show that if $h(x)=x$ then either $f(x)=0$ or $f^{\prime}(x)=0$.
(ii) Compute $h^{\prime}(x)$ and show that

$$
h^{\prime}(x)= \begin{cases}0 & \text { when } f(x)=0 \text { and } f^{\prime}(x) \neq 0 \\ 2 & \text { when } f(x) \neq 0, f^{\prime}(x)=0 \text { and } f^{\prime \prime}(x) \neq 0\end{cases}
$$

Conclude that the fixed points of h for which $f(x)=0$ are stable, but the fixed points for which $f^{\prime}(x)=0$ are not.
(iii) Use this fixed point iteration with $x_{0}=1$ to solve $f(x)=0$ where $f(x)=x^{2}-2$. Compare the performance of this method with your results for Newton's method.
(iv) Suppose $f(x)=(x-\xi)^{m} q(x)$ where $\lim _{x \rightarrow \xi} q(x) \neq 0$. Let $g(x)=x-f(x) / f^{\prime}(x)$ as in Newton's method and show that

$$
\lim _{x \rightarrow \xi} g^{\prime}(x)=\frac{m-1}{m} \quad \text { and } \quad \lim _{x \rightarrow \xi} h^{\prime}(x)=0
$$

Conclude that even when $f^{\prime}(x)=0$ this method, unlike Newton's method, has an accelerating rate of convergence as x_{n} approaches the solution $x=\xi$ to $f(x)=0$.
4. The function

$$
f(x)=2 \cos (5 x)+2 \cos (4 x)+6 \cos (3 x)+4 \cos (2 x)+10 \cos (x)+3
$$

has two roots on the interval $[0,3]$; one root is near 1 and the other near 2 .
(i) Use Newton's method $x_{n+1}=g\left(x_{n}\right)$ with $x_{0}=1$ and also with $x_{0}=2$ to approximate these two roots. Use the fact that the exact roots are $\pi / 3$ and $2 \pi / 3$ to compute the error e_{n} at each iteration for $n=0,1, \ldots, 18$.
(ii) Use the method $x_{n+1}=h\left(x_{n}\right)$ with $x_{0}=1$ and again also with $x_{0}=2$ to approximate these two roots. Again use the fact that the exact roots are $\pi / 3$ and $2 \pi / 3$ to compute the error e_{n} at each iteration for $n=0,1, \ldots, 18$.
(iii) Comment on the rate of convergence and the effects of rounding error in the above two computations.

Math 701 Programming Project 1
5. Define

$$
x_{n+1}=\frac{x_{n}+2 x_{n-1}+x_{n-2}}{4}-\frac{F_{n} F_{n}^{\prime}}{\left[F_{n}^{\prime}\right]^{2}-F_{n} F_{n}^{\prime \prime}}
$$

where

$$
\begin{aligned}
F_{n} & =f\left(\frac{x_{n}+2 x_{n-1}+x_{n-2}}{4}\right), \\
F_{n}^{\prime} & =\frac{2}{x_{n}-x_{n-2}}\left\{f\left(\frac{x_{n}+x_{n-1}}{2}\right)-f\left(\frac{x_{n-1}+x_{n-2}}{2}\right)\right\}, \\
F_{n}^{\prime \prime} & =\frac{2}{x_{n}-x_{n-2}}\left(\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}-\frac{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)}{x_{n-1}-x_{n-2}}\right)
\end{aligned}
$$

to create a secant-method-like approximation of the method given by h that doesn't involve f^{\prime} and $f^{\prime \prime}$. Study this method both numerically and analytically. Test this method for the functions $f(x)=x^{2}-2$ and

$$
f(x)=2 \cos (5 x)+2 \cos (4 x)+6 \cos (3 x)+4 \cos (2 x)+10 \cos (x)+3 .
$$

How does this method compare to the usual secant method?
6. Consider the simpification to the above method given by

$$
x_{n+1}=x_{n}-\frac{F_{n} F_{n}^{\prime}}{\left[F_{n}^{\prime}\right]^{2}-F_{n} F_{n}^{\prime \prime}} .
$$

Study this simplification both numerically and analytically. Does it work as well as the previous method? Why or why not? Consider adding a relaxation parameter $\alpha \in(0,1)$ to obtain

$$
x_{n+1}=x_{n}-\frac{\alpha F_{n} F_{n}^{\prime}}{\left[F_{n}^{\prime}\right]^{2}-F_{n} F_{n}^{\prime \prime}} .
$$

Can you find a value of α which makes the scheme work better? Is there an optimal value for α ?

