Iterated Solutions to Systems of Linear Equations

We will work on the programming part of this project in class; however, your final report should be prepared independently. Where appropriate include full program listings and output.

1. Let $g: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ be a differentiable function such that $\left\|g^{\prime}(x)\right\|<1$ for all $x \in \mathbf{R}^{d}$. Prove or disprove the claim that the iteration $x_{n+1}=g\left(x_{n}\right)$ converges for any initial vector $x_{0} \in \mathbf{R}^{d}$.
2. Given a matrix $A \in \mathbf{R}^{d \times d}$ and a vector $b \in \mathbf{R}^{d}$, suppose there exists an invertible matrix $R \in \mathbf{R}^{d \times d}$ such that $\left\|I-R^{-1} A\right\|<1$. Define $g: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ by

$$
g(x)=R^{-1}(b+(R-A) x)
$$

(i) Prove the iteration $x_{n+1}=g\left(x_{n}\right)$ converges to a fixed point $p \in \mathbf{R}^{d}$ such that $g(p)=p$ for any initial vector $x_{0} \in \mathbf{R}^{d}$.
(ii) Show $g(p)=p$ implies $A p=b$.
(iii) Is it true or false that A is invertible if and only if there exists $R \in \mathbf{R}^{d \times d}$ such that $\left\|I-R^{-1} A\right\|<1$. Explain your reasoning.
3. Suppose the matrix A is strictly diagonally dominant with entries $a_{i j}$ such that

$$
\left|a_{i i}\right|>0 \quad \text { and } \quad\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right| \quad \text { for every } \quad i=1, \ldots, d
$$

Let R be the diagonal matrix with $a_{i i}$ on its diagonal. Show that $\left\|I-R^{-1} A\right\|_{\infty}<1$. Note that the method of solving systems of linear equations by taking R to be the diagonal part of A is called Jacobi iteration.
4. Consider the matrix A and vector b given by

$$
A=\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 3
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Let $R \in \mathbf{R}^{4 \times 4}$ be the diagonal matrix with 3's on it's diagonal. Find $\left\|I-R^{-1} A\right\|_{\infty}$ and write a program that uses the iteration $x_{n+1}=g\left(x_{n}\right)$ with starting value $x_{0}=b$ to solve the equation $A x=b$. Print the vectors x_{n} for $n=0, \ldots 10$.

Math 701 Programming Project 2
5. Consider the matrix A and vector b given by

$$
A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Note that A is not strictly diagonally dominant. It does, however, satisfy a weaker condition and is simply called diagonally dominant. Let $R \in \mathbf{R}^{4 \times 4}$ be the diagonal matrix with 2's on it's diagonal.
(i) Show that $\left\|I-R^{-1} A\right\|_{\infty}=1$ and $\left\|I-R^{-1} A\right\|_{1}=1$.
(ii) Write a program to compute the spectral norm $\left\|I-R^{-1} A\right\|_{2}$ using the power method. It is fine to modify the program written in class.
(iii) Is $\left\|I-R^{-1} A\right\|_{2}$ strictly less than one?
(iv) Write a program that uses the iteration $x_{n+1}=g\left(x_{n}\right)$ with starting value $x_{0}=b$ to solve the equation $A x=b$. Print the vectors x_{n} for $n=0, \ldots 10$.
6. [Extra Credit] Suppose the matrix A has entries $a_{i j}$ such that

$$
\left|a_{i i}\right|>0 \quad \text { and } \quad\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right| \quad \text { for every } \quad i=1, \ldots, d
$$

where the second inequality is strict for at least one value of i. Let R be the diagonal matrix with $a_{i i}$ on its diagonal. Prove or disprove that $\left\|I-R^{-1} A\right\|_{2}<1$.

