Math 701 Quiz 1 Version A

1. Find a suitable trigonometric identity so that $1-\cos x$ can be accurately computed for small x with calls to the system functions for $\sin x$ or $\cos x$.
2. State Taylor's theorem including all hypothesis and the remainder term.
3. State Newton's method.

Math 701 Quiz 1 Version A

4. Prove only one of the following:
(i) Taylor's theorem.
(ii) Let f be a twice continuously differentiable function and p be a point such that $f(p)=0$ and $f^{\prime}(p) \neq 0$. Prove that Newton's method is quadratically convergent provided x_{0} is close enough to p.

Math 701 Quiz 1 Version A
Proof of Taylor's theorem or the quadratic convergence of Newton's method continues...

Math 701 Quiz 1 Version A

5. Let $A \in \mathbf{R}^{d \times d}$ be a symmetric positive semidefinite matrix. Consider the

Power Method. Choose $x_{0} \in \mathbf{R}^{d}$ randomly. Then recursively compute $y_{n}=A x_{n}$ and $x_{n+1}=y_{n} /\left\|y_{n}\right\|$ for $n \geq 0$.
Show for almost every choice of x_{0} that the limits

$$
\lambda=\lim _{n \rightarrow \infty}\left\|y_{n}\right\| \quad \text { and } \quad \xi=\lim _{n \rightarrow \infty} x_{n}
$$

exist and that λ and ξ form an eigenvalue-eigenvector pair for A such that $A \xi=\lambda \xi$.

Math 701 Quiz 1 Version A
Proof of the convergence of the power method continues ...

Math 701 Quiz 1 Version A

6. For $x \in \mathbf{R}^{d}$ define $\|x\|_{p}=\left(\sum_{k=1}^{d}\left|x_{k}\right|^{p}\right)^{1 / p}$.
(i) Prove that $\|x\|_{2} \leq\|x\|_{1}$.
(ii) [Extra credit] Prove or disprove that $\|x\|_{p} \leq\|x\|_{1}$ for every $p \geq 1$.
