1. Find a suitable trigonometric identity so that $1 - \cos x$ can be accurately computed for small x with calls to the system functions for $\sin x$ or $\cos x$.

2. State Taylor's theorem including all hypothesis and the remainder term.

3. State Newton's method.

- 4. Prove only one of the following:
 - (i) Taylor's theorem.
 - (ii) Let f be a twice continuously differentiable function and p be a point such that f(p) = 0 and $f'(p) \neq 0$. Prove that Newton's method is quadratically convergent provided x_0 is close enough to p.

Proof of Taylor's theorem or the quadratic convergence of Newton's method continues ...

5. Let $A \in \mathbf{R}^{d \times d}$ be a symmetric positive semidefinite matrix. Consider the

Power Method. Choose $x_0 \in \mathbf{R}^d$ randomly. Then recursively compute $y_n = Ax_n$ and $x_{n+1} = y_n/||y_n||$ for $n \ge 0$.

Show for almost every choice of x_0 that the limits

 $\lambda = \lim_{n \to \infty} \|y_n\|$ and $\xi = \lim_{n \to \infty} x_n$

exist and that λ and ξ form an eigenvalue-eigenvector pair for A such that $A\xi = \lambda \xi$.

Proof of the convergence of the power method continues \ldots

6. For
$$x \in \mathbf{R}^d$$
 define $||x||_p = \left(\sum_{k=1}^d |x_k|^p\right)^{1/p}$.

- (i) Prove that $||x||_2 \le ||x||_1$.
- (ii) [Extra credit] Prove or disprove that $||x||_p \le ||x||_1$ for every $p \ge 1$.