
Math 701 Quiz 2 Version A

1. Find a suitable trigonometric identity so that 1− cosx can be accurately computed
for small x with calls to the system functions for sinx or cosx.

Recall the sine angle addition formula

sin(a+ b) = sin a cos b+ cos a sin b.

This formula is easy to remember because if its symmetry. Differentiate with respect to a
to obtain the cosine angle addition formula

cos(a+ b) = cos a cos b− sin a sin b.

Now, setting a = x/2 and b = x/2 yields the half-angle formula

cosx = cos2(x/2)− sin2(x/2).

Subtracting the above identity from the Pythagorean theorem 1 = cos2(x/2) + sin2(x/2)
results in the trigonometric identity 1− cosx = 2 sin2(x/2) which is suitable to accurately
approximate 1− cosx for small values.

2. State Taylor’s theorem including all hypothesis and the remainder term.

Taylor’s Theorem. Let f :R → R be an n+1 times continuously differentiable function.
Then

f(x+ h) =
n∑

k=0

hn

n!
f (n)(x) +

hn+1

(n+ 1)!
f (n+1)(ξ)

for some ξ between x and x+ h.

3. State the power method for finding the largest eigenvalue and corresponding eigen-
vector of a symmetric positive semidefinite matrix A ∈ Rd×d.

Let x0 ∈ Rd be chosen randomly and define

yn = Axn and xn+1 = yn/∥yn∥ for n = 0, 1, 2, . . . .

Then
∥yn∥ → λ and xn → ξ as n → ∞

where λ is the largest eigenvalue of A and ξ is its corresponding eigenvector.
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4. Let f be a twice continuously differentiable function and p be a point such that
f(p) = 0 and f ′(p) ̸= 0. Prove that Newton’s method xn+1 = xn − f(xn)/f

′(xn) is
quadratically convergent provided x0 is close enough to p.

Since f ′(p) ̸= 0 there exists δ > 0 such that

A = min{ |f ′(t)| : t ∈ [p− δ, p+ δ] } > 0.

Further define
B = max{ |f ′′(t)| : t ∈ [p− δ, p+ δ] }.

Now let ϵ = min{δ,M−1} where M = B/(2A). We claim the condition |x0 − p| < ϵ is
sufficient to guarantee

lim
n→∞

xn = p and |xn+1 − p| ≤ M |xn − p|2 for n = 0, 1, 2, . . . .

Define en = xn − p. By Taylor’s theorem there is ξn between p and xn such that

0 = f(p) = f(xn) + (p− xn)f
′(xn) +

1

2
(p− xn)

2f ′′(ξn).

It follows that

0 =
f(xn)

f ′(xn)
− en +

1

2
e2n

f ′′(ξn)

f ′(xn)
or equivalently en − f(xn)

f ′(xn)
=

1

2
e2n

f ′′(ξn)

f ′(xn)
.

Consequently

|en+1| = |xn+1 − p| =
∣∣∣xn − f(xn)

f ′(xn)
− p

∣∣∣ = ∣∣∣en − f(xn)

f ′(xn)

∣∣∣ = 1

2
|en|2

∣∣∣f ′′(ξn)

f ′(xn)

∣∣∣.
Suppose for induction that |xn − p| < ϵ as is the case when n = 0. Then ϵ ≤ δ implies

|en+1| =
1

2
|en|2

∣∣∣f ′′(ξn)

f ′(xn)

∣∣∣ ≤ 1

2

max{ |f ′′(t)| : t ∈ [p− ϵ, p+ ϵ] }
min{ |f ′(t)| : t ∈ [p− ϵ, p+ ϵ] }

≤ M |en|2.

Since M |en| ≤ Mϵ ≤ 1 then |en+1| ≤ |en| which implies |xn+1 − p| < ϵ and completes the
induction. In particular, we have shown that

|en+1| ≤ M |en|2 and |en+1| ≤ |en| for n = 0, 1, 2, . . . .

It remains to show xn → p as n → ∞. The second inequality above immediately implies
|en| ≤ |e0|. Define γ = M |e0|. Since M |e0| < Mϵ ≤ MM−1 = 1 then γ < 1. Now

|en+1| ≤ M |en|2 ≤ (M |e0|)|en| = γ|en|

implies |en| ≤ γn|e0| for all n. Since γn → 0 as n → ∞ it follows that xn → p.
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5. Let B ∈ Rd×d and consider the matrix norm given by

∥B∥2 = max{ ∥Bx∥2 : ∥x∥2 = 1 } where ∥x∥2 =
( d∑

i=1

|xi|2
)1/2

.

Prove ∥B∥2 = ρ(BTB)1/2 where ρ(A) = max{ |λ| : λ is an eigenvalue of A }.

Let A = BTB. Then A ∈ Rd×d is a symmetric positive semidefinite matrix. The spectral
theorem for real symmetric matrices implies that there exists an orthonormal basis of
eigenvectors ξi with corresponding eigenvalues λi for i = 1, 2, . . . , d such that

Aξi = λiξi and ξi · ξj =
{
1 for i = j
0 otherwise.

Since A is semidefinite it is further the case that λi ≥ 0 for all i. Given x ∈ Rd there exists
constants ci ∈ R such that

x =

d∑
k=1

ckξk.

Consequently, the orthonormality of the ξk’s implies

∥x∥22 = x · x =
d∑

k=1

ckξk ·
d∑

ℓ=1

cℓξℓ =
d∑

k=1

d∑
ℓ=1

ckcℓξk · ξℓ =
d∑

k=1

c2k.

Similarly

∥Bx∥22 = Bx ·Bx = x ·Ax =
d∑

k=1

ckξk ·
d∑

ℓ=1

cℓλℓξℓ =
d∑

k=1

λkc
2
k.

Since λk ≥ 0 then λk = |λk| and it follows that

∥B∥22 = max
{ d∑

k=1

λkc
2
k :

d∑
k=1

c2k = 1
}
= max

{ d∑
k=1

|λk|c2k :

d∑
k=1

c2k = 1
}
.

The above maximum may be interpreted as the maximum over all possible weighted av-
erages of the |λk|’s. Since any weighted average is between the smallest and largest, then
further placing all the weight on the largest |λk| yields that

∥B∥22 = max{ |λk| : k = 1, 2, . . . , d }

or equivalently that ∥B∥2 = ρ(BTB)1/2.
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6. Consider the matrix A ∈ R4×4 given by

A =


−8 −6 −6 −1
4 8 −4 1

−4 −10 2 −8
3 −7 9 7


(i) Find ∥A∥1.

Since ∑d
j=1 |a1,j | = 8 + 4 + 4 + 3 = 19∑d
j=1 |a2,j | = 6 + 8 + 10 + 7 = 31∑d
j=1 |a3,j | = 6 + 4 + 2 + 9 = 21∑d
j=1 |a4,j | = 1 + 1 + 8 + 7 = 17

then

∥A∥1 = max
{ d∑

j=1

|aij | : i = 1, . . . d
}
= max{19, 31, 21, 17} = 31.

(ii) Find ∥A∥∞.

Since ∑d
i=1 |ai,1| = 8 + 6 + 6 + 1 = 21∑d
i=1 |ai,2| = 4 + 8 + 4 + 1 = 17∑d
i=1 |ai,3| = 4 + 10 + 2 + 8 = 24∑d
i=1 |ai,4| = 3 + 7 + 9 + 7 = 26

then

∥A∥1 = max
{ d∑

i=1

|aij | : j = 1, . . . d
}
= max{21, 17, 24, 26} = 26.

7. Prove or disprove whether ∥A2∥∞ = ∥A∥2∞ holds in general for matrices A ∈ R4×4.

This is false. While the matrix A defined above could demonstrate that ∥A2∥∞ ̸= ∥A∥2∞,
an easier example is

A =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 for which A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

In this case ∥A∥2∞ = 1 and ∥A2∥∞ = 0.


