Math 701 Quiz 2 Version A

1. Find a suitable trigonometric identity so that $1-\cos x$ can be accurately computed for small x with calls to the system functions for $\sin x$ or $\cos x$.
Recall the sine angle addition formula

$$
\sin (a+b)=\sin a \cos b+\cos a \sin b
$$

This formula is easy to remember because if its symmetry. Differentiate with respect to a to obtain the cosine angle addition formula

$$
\cos (a+b)=\cos a \cos b-\sin a \sin b
$$

Now, setting $a=x / 2$ and $b=x / 2$ yields the half-angle formula

$$
\cos x=\cos ^{2}(x / 2)-\sin ^{2}(x / 2)
$$

Subtracting the above identity from the Pythagorean theorem $1=\cos ^{2}(x / 2)+\sin ^{2}(x / 2)$ results in the trigonometric identity $1-\cos x=2 \sin ^{2}(x / 2)$ which is suitable to accurately approximate $1-\cos x$ for small values.
2. State Taylor's theorem including all hypothesis and the remainder term.

Taylor's Theorem. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be an $n+1$ times continuously differentiable function. Then

$$
f(x+h)=\sum_{k=0}^{n} \frac{h^{n}}{n!} f^{(n)}(x)+\frac{h^{n+1}}{(n+1)!} f^{(n+1)}(\xi)
$$

for some ξ between x and $x+h$.
3. State the power method for finding the largest eigenvalue and corresponding eigenvector of a symmetric positive semidefinite matrix $A \in \mathbf{R}^{d \times d}$.
Let $x_{0} \in \mathbf{R}^{d}$ be chosen randomly and define

$$
y_{n}=A x_{n} \quad \text { and } \quad x_{n+1}=y_{n} /\left\|y_{n}\right\| \quad \text { for } \quad n=0,1,2, \ldots
$$

Then

$$
\left\|y_{n}\right\| \rightarrow \lambda \quad \text { and } \quad x_{n} \rightarrow \xi \quad \text { as } \quad n \rightarrow \infty
$$

where λ is the largest eigenvalue of A and ξ is its corresponding eigenvector.

Math 701 Quiz 2 Version A

4. Let f be a twice continuously differentiable function and p be a point such that $f(p)=0$ and $f^{\prime}(p) \neq 0$. Prove that Newton's method $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$ is quadratically convergent provided x_{0} is close enough to p.

Since $f^{\prime}(p) \neq 0$ there exists $\delta>0$ such that

$$
A=\min \left\{\left|f^{\prime}(t)\right|: t \in[p-\delta, p+\delta]\right\}>0
$$

Further define

$$
B=\max \left\{\left|f^{\prime \prime}(t)\right|: t \in[p-\delta, p+\delta]\right\}
$$

Now let $\epsilon=\min \left\{\delta, M^{-1}\right\}$ where $M=B /(2 A)$. We claim the condition $\left|x_{0}-p\right|<\epsilon$ is sufficient to guarantee

$$
\lim _{n \rightarrow \infty} x_{n}=p \quad \text { and } \quad\left|x_{n+1}-p\right| \leq M\left|x_{n}-p\right|^{2} \quad \text { for } \quad n=0,1,2, \ldots
$$

Define $e_{n}=x_{n}-p$. By Taylor's theorem there is ξ_{n} between p and x_{n} such that

$$
0=f(p)=f\left(x_{n}\right)+\left(p-x_{n}\right) f^{\prime}\left(x_{n}\right)+\frac{1}{2}\left(p-x_{n}\right)^{2} f^{\prime \prime}\left(\xi_{n}\right)
$$

It follows that

$$
0=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-e_{n}+\frac{1}{2} e_{n}^{2} \frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \text { or equivalently } \quad e_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\frac{1}{2} e_{n}^{2} \frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Consequently

$$
\left|e_{n+1}\right|=\left|x_{n+1}-p\right|=\left|x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-p\right|=\left|e_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right|=\frac{1}{2}\left|e_{n}\right|^{2}\left|\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right| .
$$

Suppose for induction that $\left|x_{n}-p\right|<\epsilon$ as is the case when $n=0$. Then $\epsilon \leq \delta$ implies

$$
\left|e_{n+1}\right|=\frac{1}{2}\left|e_{n}\right|^{2}\left|\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right| \leq \frac{1}{2} \frac{\max \left\{\left|f^{\prime \prime}(t)\right|: t \in[p-\epsilon, p+\epsilon]\right\}}{\min \left\{\left|f^{\prime}(t)\right|: t \in[p-\epsilon, p+\epsilon]\right\}} \leq M\left|e_{n}\right|^{2} .
$$

Since $M\left|e_{n}\right| \leq M \epsilon \leq 1$ then $\left|e_{n+1}\right| \leq\left|e_{n}\right|$ which implies $\left|x_{n+1}-p\right|<\epsilon$ and completes the induction. In particular, we have shown that

$$
\left|e_{n+1}\right| \leq M\left|e_{n}\right|^{2} \quad \text { and } \quad\left|e_{n+1}\right| \leq\left|e_{n}\right| \quad \text { for } \quad n=0,1,2, \ldots
$$

It remains to show $x_{n} \rightarrow p$ as $n \rightarrow \infty$. The second inequality above immediately implies $\left|e_{n}\right| \leq\left|e_{0}\right|$. Define $\gamma=M\left|e_{0}\right|$. Since $M\left|e_{0}\right|<M \epsilon \leq M M^{-1}=1$ then $\gamma<1$. Now

$$
\left|e_{n+1}\right| \leq M\left|e_{n}\right|^{2} \leq\left(M\left|e_{0}\right|\right)\left|e_{n}\right|=\gamma\left|e_{n}\right|
$$

implies $\left|e_{n}\right| \leq \gamma^{n}\left|e_{0}\right|$ for all n. Since $\gamma^{n} \rightarrow 0$ as $n \rightarrow \infty$ it follows that $x_{n} \rightarrow p$.

Math 701 Quiz 2 Version A
5. Let $B \in \mathbf{R}^{d \times d}$ and consider the matrix norm given by

$$
\|B\|_{2}=\max \left\{\|B x\|_{2}:\|x\|_{2}=1\right\} \quad \text { where } \quad\|x\|_{2}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

Prove $\|B\|_{2}=\rho\left(B^{T} B\right)^{1 / 2}$ where $\rho(A)=\max \{|\lambda|: \lambda$ is an eigenvalue of $A\}$.
Let $A=B^{T} B$. Then $A \in R^{d \times d}$ is a symmetric positive semidefinite matrix. The spectral theorem for real symmetric matrices implies that there exists an orthonormal basis of eigenvectors ξ_{i} with corresponding eigenvalues λ_{i} for $i=1,2, \ldots, d$ such that

$$
A \xi_{i}=\lambda_{i} \xi_{i} \quad \text { and } \quad \xi_{i} \cdot \xi_{j}= \begin{cases}1 & \text { for } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Since A is semidefinite it is further the case that $\lambda_{i} \geq 0$ for all i. Given $x \in \mathbf{R}^{d}$ there exists constants $c_{i} \in \mathbf{R}$ such that

$$
x=\sum_{k=1}^{d} c_{k} \xi_{k}
$$

Consequently, the orthonormality of the ξ_{k} 's implies

$$
\|x\|_{2}^{2}=x \cdot x=\sum_{k=1}^{d} c_{k} \xi_{k} \cdot \sum_{\ell=1}^{d} c_{\ell} \xi_{\ell}=\sum_{k=1}^{d} \sum_{\ell=1}^{d} c_{k} c_{\ell} \xi_{k} \cdot \xi_{\ell}=\sum_{k=1}^{d} c_{k}^{2}
$$

Similarly

$$
\|B x\|_{2}^{2}=B x \cdot B x=x \cdot A x=\sum_{k=1}^{d} c_{k} \xi_{k} \cdot \sum_{\ell=1}^{d} c_{\ell} \lambda_{\ell} \xi_{\ell}=\sum_{k=1}^{d} \lambda_{k} c_{k}^{2}
$$

Since $\lambda_{k} \geq 0$ then $\lambda_{k}=\left|\lambda_{k}\right|$ and it follows that

$$
\|B\|_{2}^{2}=\max \left\{\sum_{k=1}^{d} \lambda_{k} c_{k}^{2}: \sum_{k=1}^{d} c_{k}^{2}=1\right\}=\max \left\{\sum_{k=1}^{d}\left|\lambda_{k}\right| c_{k}^{2}: \sum_{k=1}^{d} c_{k}^{2}=1\right\}
$$

The above maximum may be interpreted as the maximum over all possible weighted averages of the $\left|\lambda_{k}\right|$'s. Since any weighted average is between the smallest and largest, then further placing all the weight on the largest $\left|\lambda_{k}\right|$ yields that

$$
\|B\|_{2}^{2}=\max \left\{\left|\lambda_{k}\right|: k=1,2, \ldots, d\right\}
$$

or equivalently that $\|B\|_{2}=\rho\left(B^{T} B\right)^{1 / 2}$.

Math 701 Quiz 2 Version A
6. Consider the matrix $A \in \mathbf{R}^{4 \times 4}$ given by

$$
A=\left[\begin{array}{rrrr}
-8 & -6 & -6 & -1 \\
4 & 8 & -4 & 1 \\
-4 & -10 & 2 & -8 \\
3 & -7 & 9 & 7
\end{array}\right]
$$

(i) Find $\|A\|_{1}$.

Since

$$
\begin{aligned}
& \sum_{j=1}^{d}\left|a_{1, j}\right|=8+4+4+3=19 \\
& \sum_{j=1}^{d}\left|a_{2, j}\right|=6+8+10+7=31 \\
& \sum_{j=1}^{d}\left|a_{3, j}\right|=6+4+2+9=21 \\
& \sum_{j=1}^{d}\left|a_{4, j}\right|=1+1+8+7=17
\end{aligned}
$$

then

$$
\|A\|_{1}=\max \left\{\sum_{j=1}^{d}\left|a_{i j}\right|: i=1, \ldots d\right\}=\max \{19,31,21,17\}=31
$$

(ii) Find $\|A\|_{\infty}$.

Since

$$
\begin{aligned}
& \sum_{i=1}^{d}\left|a_{i, 1}\right|=8+6+6+1=21 \\
& \sum_{i=1}^{d}\left|a_{i, 2}\right|=4+8+4+1=17 \\
& \sum_{i=1}^{d}\left|a_{i, 3}\right|=4+10+2+8=24 \\
& \sum_{i=1}^{d}\left|a_{i, 4}\right|=3+7+9+7=26
\end{aligned}
$$

then

$$
\|A\|_{1}=\max \left\{\sum_{i=1}^{d}\left|a_{i j}\right|: j=1, \ldots d\right\}=\max \{21,17,24,26\}=26
$$

7. Prove or disprove whether $\left\|A^{2}\right\|_{\infty}=\|A\|_{\infty}^{2}$ holds in general for matrices $A \in \mathbf{R}^{4 \times 4}$. This is false. While the matrix A defined above could demonstrate that $\left\|A^{2}\right\|_{\infty} \neq\|A\|_{\infty}^{2}$, an easier example is

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { for which } \quad A^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In this case $\|A\|_{\infty}^{2}=1$ and $\left\|A^{2}\right\|_{\infty}=0$.

