1. Find a suitable trigonometric identity so that $1 - \cos x$ can be accurately computed for small x with calls to the system functions for $\sin x$ or $\cos x$.

Recall the sine angle addition formula

$$\sin(a+b) = \sin a \cos b + \cos a \sin b.$$

This formula is easy to remember because if its symmetry. Differentiate with respect to a to obtain the cosine angle addition formula

$$\cos(a+b) = \cos a \cos b - \sin a \sin b.$$

Now, setting a = x/2 and b = x/2 yields the half-angle formula

$$\cos x = \cos^2(x/2) - \sin^2(x/2).$$

Subtracting the above identity from the Pythagorean theorem $1 = \cos^2(x/2) + \sin^2(x/2)$ results in the trigonometric identity $1 - \cos x = 2\sin^2(x/2)$ which is suitable to accurately approximate $1 - \cos x$ for small values.

2. State Taylor's theorem including all hypothesis and the remainder term.

Taylor's Theorem. Let $f: \mathbf{R} \to \mathbf{R}$ be an n+1 times continuously differentiable function. Then

$$f(x+h) = \sum_{k=0}^{n} \frac{h^{n}}{n!} f^{(n)}(x) + \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

for some ξ between x and x + h.

3. State the power method for finding the largest eigenvalue and corresponding eigenvector of a symmetric positive semidefinite matrix $A \in \mathbf{R}^{d \times d}$.

Let $x_0 \in \mathbf{R}^d$ be chosen randomly and define

$$y_n = Ax_n$$
 and $x_{n+1} = y_n / ||y_n||$ for $n = 0, 1, 2,$

Then

 $||y_n|| \to \lambda$ and $x_n \to \xi$ as $n \to \infty$

where λ is the largest eigenvalue of A and ξ is its corresponding eigenvector.

4. Let f be a twice continuously differentiable function and p be a point such that f(p) = 0 and $f'(p) \neq 0$. Prove that Newton's method $x_{n+1} = x_n - f(x_n)/f'(x_n)$ is quadratically convergent provided x_0 is close enough to p.

Since $f'(p) \neq 0$ there exists $\delta > 0$ such that

$$A = \min\{ |f'(t)| : t \in [p - \delta, p + \delta] \} > 0.$$

Further define

$$B = \max\{ |f''(t)| : t \in [p - \delta, p + \delta] \}.$$

Now let $\epsilon = \min\{\delta, M^{-1}\}$ where M = B/(2A). We claim the condition $|x_0 - p| < \epsilon$ is sufficient to guarantee

$$\lim_{n \to \infty} x_n = p \quad \text{and} \quad |x_{n+1} - p| \le M |x_n - p|^2 \quad \text{for} \quad n = 0, 1, 2, \dots$$

Define $e_n = x_n - p$. By Taylor's theorem there is ξ_n between p and x_n such that

$$0 = f(p) = f(x_n) + (p - x_n)f'(x_n) + \frac{1}{2}(p - x_n)^2 f''(\xi_n).$$

It follows that

$$0 = \frac{f(x_n)}{f'(x_n)} - e_n + \frac{1}{2}e_n^2 \frac{f''(\xi_n)}{f'(x_n)} \quad \text{or equivalently} \quad e_n - \frac{f(x_n)}{f'(x_n)} = \frac{1}{2}e_n^2 \frac{f''(\xi_n)}{f'(x_n)}$$

Consequently

$$|e_{n+1}| = |x_{n+1} - p| = \left|x_n - \frac{f(x_n)}{f'(x_n)} - p\right| = \left|e_n - \frac{f(x_n)}{f'(x_n)}\right| = \frac{1}{2}|e_n|^2 \left|\frac{f''(\xi_n)}{f'(x_n)}\right|.$$

Suppose for induction that $|x_n - p| < \epsilon$ as is the case when n = 0. Then $\epsilon \leq \delta$ implies

$$|e_{n+1}| = \frac{1}{2}|e_n|^2 \left|\frac{f''(\xi_n)}{f'(x_n)}\right| \le \frac{1}{2} \frac{\max\{|f''(t)| : t \in [p-\epsilon, p+\epsilon]\}}{\min\{|f'(t)| : t \in [p-\epsilon, p+\epsilon]\}} \le M|e_n|^2.$$

Since $M|e_n| \leq M\epsilon \leq 1$ then $|e_{n+1}| \leq |e_n|$ which implies $|x_{n+1} - p| < \epsilon$ and completes the induction. In particular, we have shown that

$$|e_{n+1}| \le M |e_n|^2$$
 and $|e_{n+1}| \le |e_n|$ for $n = 0, 1, 2, \dots$

It remains to show $x_n \to p$ as $n \to \infty$. The second inequality above immediately implies $|e_n| \leq |e_0|$. Define $\gamma = M|e_0|$. Since $M|e_0| < M\epsilon \leq MM^{-1} = 1$ then $\gamma < 1$. Now

$$|e_{n+1}| \le M |e_n|^2 \le (M |e_0|) |e_n| = \gamma |e_n|$$

implies $|e_n| \leq \gamma^n |e_0|$ for all n. Since $\gamma^n \to 0$ as $n \to \infty$ it follows that $x_n \to p$.

5. Let $B \in \mathbf{R}^{d \times d}$ and consider the matrix norm given by

$$||B||_2 = \max\{ ||Bx||_2 : ||x||_2 = 1 \}$$
 where $||x||_2 = \left(\sum_{i=1}^d |x_i|^2\right)^{1/2}$.

Prove $||B||_2 = \rho(B^T B)^{1/2}$ where $\rho(A) = \max\{ |\lambda| : \lambda \text{ is an eigenvalue of } A \}.$

Let $A = B^T B$. Then $A \in \mathbb{R}^{d \times d}$ is a symmetric positive semidefinite matrix. The spectral theorem for real symmetric matrices implies that there exists an orthonormal basis of eigenvectors ξ_i with corresponding eigenvalues λ_i for i = 1, 2, ..., d such that

$$A\xi_i = \lambda_i \xi_i$$
 and $\xi_i \cdot \xi_j = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise.} \end{cases}$

Since A is semidefinite it is further the case that $\lambda_i \ge 0$ for all i. Given $x \in \mathbf{R}^d$ there exists constants $c_i \in \mathbf{R}$ such that

$$x = \sum_{k=1}^{d} c_k \xi_k.$$

Consequently, the orthonormality of the ξ_k 's implies

$$\|x\|_{2}^{2} = x \cdot x = \sum_{k=1}^{d} c_{k}\xi_{k} \cdot \sum_{\ell=1}^{d} c_{\ell}\xi_{\ell} = \sum_{k=1}^{d} \sum_{\ell=1}^{d} c_{k}c_{\ell}\xi_{k} \cdot \xi_{\ell} = \sum_{k=1}^{d} c_{k}^{2}.$$

Similarly

$$||Bx||_{2}^{2} = Bx \cdot Bx = x \cdot Ax = \sum_{k=1}^{d} c_{k}\xi_{k} \cdot \sum_{\ell=1}^{d} c_{\ell}\lambda_{\ell}\xi_{\ell} = \sum_{k=1}^{d} \lambda_{k}c_{k}^{2}.$$

Since $\lambda_k \geq 0$ then $\lambda_k = |\lambda_k|$ and it follows that

$$||B||_{2}^{2} = \max\left\{\sum_{k=1}^{d} \lambda_{k} c_{k}^{2} : \sum_{k=1}^{d} c_{k}^{2} = 1\right\} = \max\left\{\sum_{k=1}^{d} |\lambda_{k}| c_{k}^{2} : \sum_{k=1}^{d} c_{k}^{2} = 1\right\}.$$

The above maximum may be interpreted as the maximum over all possible weighted averages of the $|\lambda_k|$'s. Since any weighted average is between the smallest and largest, then further placing all the weight on the largest $|\lambda_k|$ yields that

$$||B||_2^2 = \max\{ |\lambda_k| : k = 1, 2, \dots, d \}$$

or equivalently that $||B||_2 = \rho (B^T B)^{1/2}$.

6. Consider the matrix $A \in \mathbf{R}^{4 \times 4}$ given by

$$A = \begin{bmatrix} -8 & -6 & -6 & -1 \\ 4 & 8 & -4 & 1 \\ -4 & -10 & 2 & -8 \\ 3 & -7 & 9 & 7 \end{bmatrix}$$

(i) Find $||A||_1$.

Since

$$\sum_{j=1}^{d} |a_{1,j}| = 8 + 4 + 4 + 3 = 19$$

$$\sum_{j=1}^{d} |a_{2,j}| = 6 + 8 + 10 + 7 = 31$$

$$\sum_{j=1}^{d} |a_{3,j}| = 6 + 4 + 2 + 9 = 21$$

$$\sum_{j=1}^{d} |a_{4,j}| = 1 + 1 + 8 + 7 = 17$$

then

$$||A||_1 = \max\left\{\sum_{j=1}^d |a_{ij}| : i = 1, \dots d\right\} = \max\{19, 31, 21, 17\} = 31.$$

(ii) Find $||A||_{\infty}$.

Since

$$\sum_{i=1}^{d} |a_{i,1}| = 8 + 6 + 6 + 1 = 21$$

$$\sum_{i=1}^{d} |a_{i,2}| = 4 + 8 + 4 + 1 = 17$$

$$\sum_{i=1}^{d} |a_{i,3}| = 4 + 10 + 2 + 8 = 24$$

$$\sum_{i=1}^{d} |a_{i,4}| = 3 + 7 + 9 + 7 = 26$$

then

$$||A||_1 = \max\left\{\sum_{i=1}^d |a_{ij}| : j = 1, \dots d\right\} = \max\{21, 17, 24, 26\} = 26.$$

7. Prove or disprove whether $||A^2||_{\infty} = ||A||_{\infty}^2$ holds in general for matrices $A \in \mathbb{R}^{4 \times 4}$. This is false. While the matrix A defined above could demonstrate that $||A^2||_{\infty} \neq ||A||_{\infty}^2$, an easier example is

In this case $||A||_{\infty}^2 = 1$ and $||A^2||_{\infty} = 0$.