
Math 701: Secant Method

The secant method approximates solutions to f(x) = 0 using an iterative scheme similar
to Newton’s method in which the derivative has been replace by

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
.

This results in the two-term recurrence

xn+1 = xn − f(xn)(xn − xn−1)

f(xn)− f(xn−1)

which needs a base of two different approximations x0 and x1 of the solution to get started.
Let p be the exact solution such that f(p) = 0 and suppose f ′(p) ̸= 0. Before proving

that x0 and x1 sufficiently close to p implies xn → p with order α = (1 +
√
5)/2, we first

derive this rate of convergence heuristically.

Intuitive Derivation of the Rate of Convergence

Define en = xn − p and assume xn → p as n → ∞ and further that |en| ∼ M |en−1|α for
some constants M > 0 and α ≥ 1.

Let ϵ > 0 be arbitrary. By definition

en+1 = xn+1 − p = xn − f(xn)(xn − xn−1)

f(xn)− f(xn−1)
− p = en − f(xn)(en − en−1)

f(xn)− f(xn−1)

= en − f(xn)(en − en−1)

f(xn)− f(xn−1)
=

en
(
f(xn)− f(xn−1)

)
− f(xn)(en − en−1)

f(xn)− f(xn−1)

=
en

(
f(xn)− f(xn−1)

)
− f(xn)(en − en−1)

f(xn)− f(xn−1)
=

f(xn)en−1 − f(xn−1)en
f(xn)− f(xn−1)

=
(f(xn)

en
− f(xn−1)

en−1

)( enen−1

f(xn)− f(xn−1)

)
=

{
f(xn)/en − f(xn−1)/en−1

xn − xn−1

}( xn − xn−1

f(xn)− f(xn−1)

)
enen−1

Claim that

xn − xn−1

f(xn)− f(xn−1)
≈ 1

f ′(p)
and

f(xn)/en − f(xn−1)/en−1

xn − xn−1
≈ f ′′(p)

2
.

As this is a heuristic derivation of α there is no need to prove the above claims rigorously,
but only to justify them from an intuitive point of view.

For the first part of the claim note the mean value theorem implies there is ξn between
xn and xn−1 such that

f(xn)− f(xn−1) = f ′(ξn)(xn − xn−1).
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It follows that f ′(ξn) → f ′(p) since ξn → p as n → ∞. Therefore

xn − xn−1

f(xn)− f(xn−1)
→ 1

f ′(p)
as n → ∞.

Consequently, if n is large enough then

xn − xn−1

f(xn)− f(xn−1)
≈ 1

f ′(p)

and the first part of the claim has been justified.
An intuitive justification of the second part of the claim is similar, but slightly more

involved. By Taylor’s theorem there is ηn between xn and p such that

f(xn) = f(p) + (xn − p)f ′(p) +
1

2
(xn − p)2f ′′(p) +

1

3!
(xn − p)3f ′′′(ηn).

Therefore

f(xn) ≈ enf
′(p) +

1

2
e2nf

′′(p).

This suggests that

f(xn)/en − f(xn−1)/en−1

xn − xn−1
≈ f ′(p)− f ′(p)

xn − xn−1
+

1

2

enf
′′(p)− en−1f

′′(p)

xn − xn−1
=

f ′′(p)

2
.

We are now ready to infer a plausible value for α the order of convergence of the
secant method. Combine the results of the claim with the expression for en−1 to obtain

|en+1| ≈ C|en||en−1| where C =
∣∣∣ f ′′(p)

2f ′(p)

∣∣∣.
Substituting the relation |en| ∼ M |en−1|α yields

M |en|α ≈ M1+α|en−1|α
2

≈ CM |en−1|α|en−1|.

Solving for M and α from the relations

M1+α = CM and α2 = α+ 1

obtains

M = C1/α =
∣∣∣ f ′′(p)

2f ′(p)

∣∣∣1/α and α =
1 +

√
5

2
.

This finishes our heuristic derivation of the rate of convergence of the secant method.

2



Rigorous Proof of the Rate of Convergence

We assume f is twice continuously differentiable and that p is such that f(p) = 0 and
f ′(p) ̸= 0. The secant method is

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

First claim if x0 and x1 with x0 ̸= x1 are chosen close enough to p that xn → p as n → ∞.
That is, the secant method converges. Let

κ(α, β) = 1− f ′(α)

f ′(β)
.

Since f ′(p) ̸= 0 it follows that the limit supremum of |κ(α, β)| is zero as α → p and β → p.
Therefore, there is δ > 0 so small such that

|κ(α, β)| ≤ γ < 1 whenever |α− p| < δ and |β − p| < δ.

Choose x0 and x1 such that |x0 − p| < δ and |x1 − p| < δ. By the mean-value theorem

f(xn)− f(p)

xn − p
= f ′(an) and

f(xn)− f(xn−1)

xn − xn−1
= f ′(bn)

for some an between xn and p and for some bn between xn and xn−1. For induction assume
|xn − p| < δ and |xn−1 − p| < δ, in which case |an − p| < δ and |bn − p| < δ. Denoting
en = xn − p we obtain

en+1 = en − f(xn)
en − en−1

f(xn)− f(xn−1)

= en − (f(xn)− f(p))(en − en−1)

f(xn)− f(xn−1)

= en − f ′(an)en(en − en−1)

f ′(bn)(en − en−1)
=

(
1− f ′(an)

f ′(bn)

)
en.

Therefore, |en+1| ≤ γ|en| and by induction |en+1| ≤ γn|e1|. Since γ < 1, it follows that
xn → p as n → ∞ and the secant method converges.

Claim there exists C such that |en+1|/|enen−1| → C as n → ∞. First note that

en+1 = en − f(xn)
en − en−1

f(xn)− f(xn−1)

= en − f(xn)en − f(xn−1)en + f(xn−1)en − f(xn)en−1

f(xn)− f(xn−1)

=
f(xn)en−1 − f(xn−1)en

f(xn)− f(xn−1)
=

f(xn)/en − f(xn−1)/en−1

f ′(bn)(xn − xn−1)
enen−1.
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Define

A = max{ |f ′′(x)| : |x− p| ≤ δ }.

Since f ′′ is continuous, it follows that A < ∞. By Taylor’s theorem we have

f(xn) = f(p) + f ′(p)en +

∫ xn

p

f ′′(t)(xn − t)dt

Now

f(xn)

en
− f(xn−1)

en−1
=

1

en

∫ xn

p

f ′′(t)(xn − t)dt− 1

en−1

∫ xn−1

p

f ′′(t)(xn−1 − t)dt

= J1 + J2

where

J1 =
( 1

en
− 1

en−1

)∫ xn

p

f ′′(t)(xn − t)dt

and

J2 =
1

en−1

(∫ xn

p

f ′′(t)(xn − t)dt−
∫ xn−1

p

f ′′(t)(xn−1 − t)dt
)

= J3 + J4

Here

J3 =
xn − xn−1

en−1

∫ xn

p

f ′′(t)dt and J4 =
1

en−1

∫ xn

xn−1

f ′′(t)(xn−1 − t)dt.

Estimate

|J1| ≤ A
∣∣∣ 1
en

− 1

en−1

∣∣∣∣∣∣ ∫ xn

p

(xn − t)dt
∣∣∣

≤ A
|xn − xn−1|
|enen−1|

|en|2

2
≤ A

∣∣∣ en
en−1

∣∣∣ |xn − xn−1|
2

Therefore

|J1|
|xn − xn−1|

≤ A

2

∣∣∣ en
en−1

∣∣∣ = A

2

∣∣∣1− f ′(an)

f ′(bn)

∣∣∣ → 0 as n → ∞.

Also
|J3|

|xn − xn−1|
≤ A

∣∣∣ en
en−1

∣∣∣ → 0 as n → ∞.
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The estimate of J4 will be done more carefully. Consider two cases: If xn−1 < xn then the
mean-value theorem for integrals implies

2

(xn − xn−1)2

∫ xn

xn−1

f ′′(t)(t− xn−1)dt = f ′′(ξn) where ξn ∈ [xn−1, xn].

If xn < xn−1 then

2

(xn−1 − xn)2

∫ xn−1

xn

f ′′(t)(xn−1 − t)dt = f ′′(ξn) where ξn ∈ [xn, xn−1].

In either case it holds that

J4
xn − xn−1

= f ′′(ξn)
xn − xn−1

2en−1
=

f ′′(ξn)

2

( en
en−1

+ 1
)
→ f ′′(p)

2

as n → ∞. It follows that

J2 → f ′′(p)

2
as n → ∞.

Consequently ∣∣∣ en+1

enen−1

∣∣∣ → C where C =
∣∣∣ f ′′(p)

2f ′(p)

∣∣∣ as n → ∞.

Claim that the secant method converges with order α. Note that

1

α− 1
= α, α2 − 1 = α, and

1

α
+

1

α2
= 1.

Define Kn = |en+1|/|enen−1| and Mn = |en+1|/|en|α. Then

Mα
nMn−1 =

( |en+1|α

|en|α2

)( |en|
|en−1|α

)
=

( |en+1|
|enen−1|

)α

= Kα
n .

It follows that

Mn =
Kn

M
1/α
n−1

and similarly Mn+1 =
Kn+1

M
1/α
n

.

Combining the above two inequalities implies

Mn+1 =
Kn+1

K
1/α
n

M
1/α2

n−1 .

Since Kn → C as n → ∞ then

Kn+1

K
1/α
n

→ C1−1/α = C2−α as n → ∞.
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Since 2−α > 0, the above limit makes sense even when f ′′(p) = 0. Let L = 1+C2−α. By
the definition of limit, there exists N large enough such that

Mn+1 ≤ LM
1/α2

n−1 for all n ≥ N.

The above inequality and the fact that 1/α2 < 1 implies that the sequence Mn is bounded.
In particular, suppose M2n−1 > Lα where 2n ≥ N , then

M2n+1 ≤ LM
1/α2

2n−1 < M
1/α+1/α2

2n−1 = M2n−1.

ThereforeM2(n+k)+1 ≤ M2n−1 for all k ∈ N. Similarly ifM2n > Lα for some 2n ≥ N , then
M2(n+k) ≤ M2n for all k ∈ N. Having consider both even and odd terms, we conclude in
general that Mk is bounded. Consequently there exists M large enough such that Mn ≤ M
for every n ∈ N. Thus

|en+1| ≤ M |en|α for every n ∈ N

and so the secant method converges with order at least α.

The following references were consulted when preparing the above proof:

[1] Burden, Fairs and Burden, Numerical Analysis, Tenth Edition, hint given in for Prob-
lem 14 in Section 2.4.

[2] Dahlquist and Björck, Numerical Methods in Scientific Computer, Volume I, proof of
Theorem 6.2.1.
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