Nonlinear Schrödinger Equation

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.

1. Consider the nonlinear Schrödinger equation

$$
\begin{cases}i v_{t}=v_{x x}+2|v|^{2} v & \text { for }(x, t) \in \mathbf{R} \times(0, T) \\ v(x, 0)=f(x) & \text { for } x \in \mathbf{R}\end{cases}
$$

Suppose for some $L>0$ that $f(x)=f(x+L)$ for $x \in \mathbf{R}$. Prove the resulting solution v satisfies $v(x, t)=v(x+L, t)$ for all $(x, t) \in \mathbf{R} \times(0, T)$. We shall say that v satisfies the nonlinear Schrödinger equation with L-periodic boundary conditions.
2. Let v be a solution to the nonlinear Schrödinger equation with L-periodic boundary conditions. Let $\Delta x=L / K$ and $\Delta t=T / N$ and consider the finite difference method for approximating v on $[0, L] \times[0, T]$ given by

$$
\begin{cases}u_{k}^{n+1}=u_{k}^{n-1}-\frac{2 i \Delta t}{\Delta x^{2}} \delta^{2} u_{k}^{n}-4 i \Delta t\left|u_{k}^{n}\right|^{2} u_{k}^{n} & \text { for } n=1, \ldots, N-1 \\ u_{k}^{1}=u_{k}^{0}-\frac{i \Delta t}{\Delta x^{2}} \delta^{2} u_{k}^{0}-2 i \Delta t\left|u_{k}^{0}\right|^{2} u_{k}^{0} & \text { and } k=1, \ldots, K \\ u_{0}^{n}=u_{K}^{n} \quad \text { and } \quad u_{K+1}^{n}=u_{1}^{n} & \text { for } k=1, \ldots, K \\ u_{k}^{0}=f(k \Delta x) & \text { for } n=0, \ldots, N \\ & \end{cases}
$$

For $L=10$ and $T=0.2$ choose K and N sufficiently large to approximate $v(5,0.2)$ to at least 3 significant digits for the personalized initial condition f given below

$$
\begin{aligned}
f_{\text {Alexander }}(x) & =2 \exp (3 i \sin (\omega x))+\sin (3 \omega x) \\
f_{\text {Anthony }}(x) & =\exp (i \omega x)-\sin (2 \omega x)+\exp (5 i \omega x) \\
f_{\text {Brian }}(x) & =0.5 \exp (i \omega x)+0.5 \sin (2 \omega x)-2 i \cos (3 \omega x) \\
f_{\text {Jordan }}(x) & =2 \exp (-i \omega x)-i \cos (3 \omega x) \\
f_{\text {Joseph }}(x) & =0.5 \exp (i \omega x)-\exp (2 i \omega x)+i \exp (3 i \omega x)+0.5 \exp (5 i \omega x) \\
f_{\text {Kyle }}(x) & =i \sin (\omega x)+\cos (2 \omega x)+\exp (-3 i \omega x) \\
f_{\text {Masakazu }}(x) & =1+\exp (i \omega x) \\
f_{\text {Sarah }}(x) & =\exp (i \omega x)+\exp (-2 i \omega x)+\exp (3 i \omega x) \\
f_{\text {Shijie }}(x) & =\sin (3 \cos (\omega x))+2 \exp (2 i \omega x)
\end{aligned}
$$

where $\omega=\pi / 5$.
3. Approximate $v(5,0.2)$ using one of the other methods found, for example, in

Thiab R. Taha, Mark J. Ablowitz, Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations II: Numerical, Nonlinear Schrödinger Equation, J. Comput. Phys., 55 (1984), pp. 203-230.

Please include a bibliographic reference to the method you implemented as a comment in your source code.

