
Math 702 Homework 1 Answer Key

The Fast Fourier Transform

1. The conquer and divide step when 2K = N described by

N−1∑
l=0

e−i2πkl/Nxl =

K−1∑
p=0

e−i2πkp/Kx2p + e−2πk/N
K−1∑
p=0

e−i2πkp/Kx2p+1

splits the terms of the sum for the discrete Fourier transform into add and terms.
Construct a similar equation for use when N = 3n that divides the sum into three
parts such that l divided by 3 has remainder 0, 1 or 2.

Suppose 3K = N then a similar equation that divides the discrete Fourier transform into
three parts is

N−1∑
l=0

e−i2πkl/Nxl =
(∑

l≡0 (mod 3)

+
∑

l≡1 (mod 3)

+
∑

l≡2 (mod 3)

)
e−i2πkl/Nxl

=
K−1∑
p=0

e−i2π(3p)l/Nx3p +
K−1∑
p=0

e−i2π(3p+1)l/Nx3p+1 +
K−1∑
p=0

e−i2π(3p+2)l/Nx3p+2

=

K−1∑
p=0

e−i2πpl/Kx3p + e−i2πl/N
K−1∑
p=0

e−i2πpl/Kx3p+1 + e−i4πl/N
K−1∑
p=0

e−i2πpl/Kx3p+2.

Note that the last three sums are exactly Fourier transforms of size N/3 = K for the
vectors with components x3p, x3p+1 and x3p+2 respectively.

1

Math 702 Homework 1 Answer Key

2. Let z = a + bi and w = u + iv be complex numbers. It takes four real-values
multiplications when using the foil method to find the product zw. Look up fast
complex multiplication, describe it and explain how many real-valued multiplications
the fast algorithm uses for find zw.

For reference, note that by the foil method we have

zw = (a+ bi)(u+ iv) = au− bv + i(av + bu).

Now, set M = a+ b and N = u+ v and form the three products

η1 = au, η2 = MN and η3 = bv.

Since
η2 = (a+ b)(u+ v) = au+ av + bu+ bv = η1 + av + bu+ η3,

it follows that
zw = η1 − η3 + i(η2 − η1 − η3).

Therefore, fact complex multiplication finds the product zw using only three multiplica-
tions. It should be noted, however, that the number of additions and subtractions have
increased from two to five.

Suppose T∗ is the computational effort to multiply two real floating-point numbers
and T± is the effort to perform either addition or subtraction. For fast complex multipli-
cation to be faster than the foil method we must have

3T∗ + 5T± ≤ 4T∗ + 2T± or equivalently 3T± ≤ T∗.

Therefore, if on any particular CPU architecture it happens that floating point multiplica-
tion is less than three times as long as an addition and subtraction, then the foil method
would actually be faster.

2

Math 702 Homework 1 Answer Key

3. Compute the number of real-valued double-precision floating point multiplications,
additions and subtractions achieved per second for test runs of the fast Fourier
transform detailed in the following table:

Processor Cores N Seconds

AMD A6-9225 1 1048576 0.72
AMD A6-9225 2 1048576 0.48
Intel Xeon E5-2520 1 1048576 0.82
Intel Xeon E5-2520 12 1048576 0.21

Explain your reasoning and how you counted the total number of operations. How
many evaluations of the exponential function are performed?

Upon examining the Fortran code, we find that all the computation for the fast Fourier
transform is performed by the routine fftwork. The conquer and divide algorithm calls
this routine recursively for smaller and smaller transforms. Each time the loop

do k=0,N2-1
even=b(p+k)
odd=b(p+k+N2)
w=exp(cmplx(0D0,-2*M_PI*k/N,kind(w)))
b(p+k)=even+w*odd
b(p+k+N2)=even-w*odd

end do

executes where N2 = N/2 and N is the size of the transform size. Depending on how the
compiler optimizes things a different number of additions, subtractions, multiplications
and even divisions may be performed each time through the loop. For example, the
subexpression w*odd appears twice in the loop so an optimizing compiler would generate
code that only computes it once. A choice can further be made whether to use fast
complex multiplication or the foil method to compute this product. Also note that the
expression -2*M_PI/N is constant throughout the loop, so it need be computed only once.
However, dividing by N first and then multiplying by k can make a subtle change in
the results because of different rounding errors, so many compilers will not perform this
transformation.

In order to determine exactly what the generated code will do we will inspect the
assembly language output from the Fortran compiler. This can be obtained using the
command

$ gfortran -S -O3 -ffast-math fast.f90

Here the flag -S indicates to stop after creating the assembler code rather than making
an executable problem. The flag -ffast-math tells the compiler to perform additional
floating-point optimizations that are mathematically correct but might change the round-
ing behavior of the resulting program in subtle ways.

Upon inspecting the resulting file fast.s the assembler code generated for the loop
given above is seen to be

3

Math 702 Homework 1 Answer Key

.L14:
pxor %xmm1, %xmm1
cvtsi2sd %ebp, %xmm1
mulsd .LC4(%rip), %xmm1
mulsd 16(%rsp), %xmm1
movapd %xmm1, %xmm0
movsd %xmm1, 8(%rsp)
call cos@PLT
movsd 8(%rsp), %xmm1
xorpd .LC5(%rip), %xmm1
movsd %xmm0, (%rsp)
movapd %xmm1, %xmm0
call sin@PLT
movsd (%rsp), %xmm2

.L8:
movsd 8(%rbx), %xmm1
movsd (%rbx), %xmm3
addl $1, %ebp
movsd 0(%r13), %xmm4
movsd 8(%r13), %xmm5
movapd %xmm1, %xmm7
movapd %xmm3, %xmm6
mulsd %xmm0, %xmm7
mulsd %xmm2, %xmm1
mulsd %xmm3, %xmm0
mulsd %xmm2, %xmm6
addsd %xmm0, %xmm1
movapd %xmm4, %xmm0
addsd %xmm7, %xmm4
addsd %xmm6, %xmm0
subsd %xmm6, %xmm4
subsd %xmm7, %xmm0
movsd %xmm0, 0(%r13)
movapd %xmm5, %xmm0
subsd %xmm1, %xmm5
addsd %xmm1, %xmm0
movsd %xmm0, 8(%r13)
addq %r14, %r13
movsd %xmm4, (%rbx)
movsd %xmm5, 8(%rbx)
addq %r14, %rbx
cmpl %ebp, %r12d
jne .L14

4

Math 702 Homework 1 Answer Key

It is now a simple matter to verify that multiplication instruction mulsd appears exactly
six times in the interior of the loop. Counting the addsd and subsd instructions reveals
that four floating-point additions and three subtractions are performed each time through
the loop. Surprisingly, this is one more than the six needed to perform one each of complex
addition, subtraction and multiplication.

Note that 1/N has been precomputed using the floating-point division instruction
divsb (not shown) before the loop and stored in 16(%rsp). This converts the division
appearing in the expression -2*M_PI*k/N to multiplication by 1/N . While faster than
division, this multiplication is still performed each time through the loop rather than being
combined as part of the constant -2*M_PI/N previously identified. Further examination of
the assembler reveals the instruction sequence

mulsd %xmm0, %xmm7
mulsd %xmm2, %xmm1
mulsd %xmm3, %xmm0
mulsd %xmm2, %xmm6

which suggests that the foil method was used to compute w*odd rather than fast complex
multiplication. Without further experimentation, it is not clear whether the fast algorithm
is actually slower or whether the compiler simply missed an optimization opportunity to
avoid changing the rounding behavior of the final result. One can also see that the complex
exponential has been converted into separate calls to sin and cos by the formula

eiθ = cos(θ) + i sin(θ).

We now count the total number of additions and multiplications which will be used.
Since 1048576 = 220, then the fftwork will recurse 20 times before reaching the identity
transform. Upon returning from each recursive call, the above loop will be performed at
each level. The instructions inside the loop are therefore executed

N/2 + 2(N/22) + 22(N/23) + · · ·+ 219(N/220) = 20(N/2) = (N/2) log2 N

times. This results in

N∗ = number of multiply = 6(N/2) log2 N = 62914560

N± = add and subtract = 7(N/2) log2 N = 73400320

NFLOP = total arithmetic = 13(N/2) log2 N = 136314880

Ntrans = transcendental = 2(N/2) log2 N = 20971520.

Dividing by the timings for the different computers detailed in the question yields

Processor Cores Seconds N∗/sec N±/sec NFLOP/sec

AMD A6-9225 1 0.72 87× 106 102× 106 189× 106

AMD A6-9225 2 0.48 131× 106 153× 106 284× 106

Intel Xeon E5-2520 1 0.82 77× 106 90× 106 166× 106

Intel Xeon E5-2520 12 0.21 300× 106 350× 106 649× 106

5

Math 702 Homework 1 Answer Key

4. Download the code fasttime.f90 for determining the speed of the fast Fourier trans-
form from our website. Compile and run it on your computer. Compare the speed
of this code to the one developed in class.

I ran the fasttime.f90 code on a AMD Ryzen 7 desktop. The results were

$ gfortran -O3 -ffast-math -fopenmp fasttime.f90
$./a.out
N=1048576
B(0)=(14.440159752937522 14.440159752937522)
fft took 0.28700000047683716 seconds.
B(0)=(14.440159752937522 14.440159752937522)
parallel fft took 0.18600000441074371 seconds.

For comparison the code fft.f90 from March 7 with slight modifications yielded the fol-
lowing results

$ gfortran -O3 -ffast-math fft.f90
$./a.out
Elapsed time 0.270000011 sec

$ gfortran -O3 -ffast-math -fopenmp fft.f90
$./a.out
Elapsed time 0.143999994 sec

In summary we have

Program Serial Parallel

fasttime.f90 0.287 0.186
fft.f90 0.270 0.144

which suggests the program written in class was slightly faster.

6

