- **1.** Let $I_n = (-1/n, 1/n)$ for $n \in \mathbb{N}$ and $U = \bigcap_{n=1}^{\infty} I_n$. Then
 - (A) U = [-1, 1]
 - (B) U = (-1, 1)
 - (C) $U = \{0\}$
 - (D) $U = \emptyset$
 - (E) none of these
- **2.** Let $f: \mathbf{R} \to \mathbf{R}$. If $A \subseteq \mathbf{R}$ then
 - (A) $(f^{-1}(A))^c = \{ f(x) : x \notin A \}$ (B) $(f^{-1}(A))^c = \{ f(x) : x \in A \}$ (C) $(f^{-1}(A))^c = \{ x \in \mathbf{R} : f(x) \notin A \}$ (D) $(f^{-1}(A))^c = \{ x \in \mathbf{R} : f(x) \in A \}$ (E) none of these
- **3.** The set S of simple functions is equal to
 - (A) $S = \left\{ \sum_{k=1}^{n} a_k \chi_{E_k} : n \in \mathbf{N}, a_k \in \mathbf{R} \text{ and } E_k \in \mathcal{M} \right\}$ (B) $S = \left\{ \sum_{k=1}^{n} a_k \chi_{E_k} : n \in \mathbf{N}, a_k \ge 0 \text{ and } E_k \in \mathcal{M} \right\}$ (C) $S = \left\{ \sum_{k=1}^{\infty} a_k \chi_{E_k} : a_k \in \mathbf{R} \text{ and } E_k \in \mathcal{M} \right\}$ (D) $S = \left\{ \sum_{k=1}^{\infty} a_k \chi_{E_k} : a_k \ge 0 \text{ and } E_k \in \mathcal{M} \right\}$
 - (E) none of these
- 4. A set F ⊆ R is closed if F = F. This is equivalent to saying F is closed if
 (A) for every x ∈ F there exists r > 0 such that [x − r, x + r] ⊆ F
 - (B) for every sequence $x_n \in F$ and $x \in \mathbf{R}$ then $x_n \to x$ implies $x \in F$
 - (C) for every sequence $x_n \in F^c$ and $x \in \mathbf{R}$ then $x_n \to x$ implies $x \in F^c$
 - (D) every sequence $x_n \in F$ has a convergent subsequence
 - (E) none of these

- **5.** Let $D \subseteq \mathbf{R}$ and $f: D \to \mathbf{R}$. Suppose for every $a \in D$ and $\epsilon > 0$ there is $\delta > 0$ such that $b \in D$ and $|a b| < \delta$ implies $|f(a) f(b)| < \epsilon$. Then f must be
 - (A) continuous
 - (B) uniformly continuous
 - (C) differentiable
 - (D) both (A) and (B)
 - (E) both (A), (B) and (C)
- **6.** Let $D \subseteq \mathbf{R}$ and $f_n: D \to \mathbf{R}$ for $n \in \mathbf{N}$. Suppose for every $\epsilon > 0$ there is $N \in \mathbf{N}$ such that $n, m \geq N$ and $x \in D$ implies $|f_n(x) f_m(x)| < \epsilon$. Then the sequence f_n of real valued functions must be
 - (A) pointwise convergent
 - (B) uniformly convergent
 - (C) differentiable
 - (D) both (A) and (B) (B)
 - (E) both (A), (B) and (C) (
- 7. Given an interval I let $\ell(I)$ be its length. For each subset $A \subseteq \mathbf{R}$, the Lebesgue outer measure of A, denoted by $\lambda^*(A)$, is defined by
 - (A) $\lambda^*(A) = \inf \left\{ \sum_n \ell(I_n) : I_n \text{ are open intervals where } A \subseteq \bigcap_n I_n \right\}$
 - (B) $\lambda^*(A) = \inf \left\{ \sum_n \ell(I_n) : I_n \text{ are open intervals where } A \subseteq \bigcup_n I_n \right\}$
 - (C) $\lambda^*(A) = \sup \left\{ \sum_n \ell(I_n) : I_n \text{ are open intervals where } A \supseteq \bigcap_n I_n \right\}$
 - (D) $\lambda^*(A) = \sup\left\{\sum_n \ell(I_n) : I_n \text{ are open intervals where } A \supseteq \bigcup_n I_n\right\}$
 - (E) none of these
- 8. Let \hat{C} be the collection of Borel measurable functions, \mathcal{B} the set of Borel measurable sets and τ the collection of open sets in **R**. Then
 - (A) $\hat{C} = \left\{ f : \mathbf{R} \to \mathbf{R} \text{ such that } f^{-1}(B) \in \mathcal{B} \text{ for every } B \in \mathcal{B} \right\}$
 - (B) $\hat{C} = \{ f: \mathbf{R} \to \mathbf{R} \text{ such that } f^{-1}(O) \in \mathcal{B} \text{ for every } O \in \tau \}$
 - (C) $\hat{C} = \{ f: \mathbf{R} \to \mathbf{R} \text{ such that } f^{-1}(a) \in \mathcal{B} \text{ for every } a \in \mathbf{R} \}$
 - (D) both (A) and (B) (
 - (E) both (A), (B) and (C) (

9. The collection of Lebesgue mesaureable sets \mathcal{M} is defined to be

(A)
$$\mathcal{M} = \{ E \subseteq \mathbf{R} : \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c) \text{ for every } W \subseteq \mathbf{R} \}$$

- (B) $\mathcal{M} = \{ E \subseteq \mathbf{R} : \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W^c \cap E) \text{ for every } E \subseteq \mathbf{R} \}$
- (C) $\mathcal{M} = \{ W \subseteq \mathbf{R} : \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c) \text{ for every } E \subseteq \mathbf{R} \}$
- (D) $\mathcal{M} = \{ W \subseteq \mathbf{R} : \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W^c \cap E) \text{ for every } E \subseteq \mathbf{R} \}$
- (E) none of these
- 10. In the following true false questions \hat{C} is the set of Borel measurable functions, \mathcal{B} is the collection of Borel measurable sets, λ^* is the Lebesgue outer measure and \mathcal{M} is the set of Lebesgue measurable sets.
 - (i) If $f: \mathbf{R} \to \mathbf{R}$ is Lebesgue measureable then is must be Borel measurable.
 - (A) true
 - (B) false
 - (ii) Suppose

$$x = \sum_{k=1}^{\infty} \frac{d_k}{10^k}$$
 and $y = \sum_{k=1}^{\infty} \frac{e_k}{10^k}$ where $d_k, e_k \in \{0, 1, 2, \dots, 9\}.$

If $x \leq y$ then $d_1 \leq e_1$.

- (A) true
- (B) false
- (iii) If $\lambda^*(E) = 0$ then $E \in \mathcal{M}$.
 - (A) true
 - (B) false
- 11. Let S be the set of simple functions. The Lebesgue integral of a positive function $f: \mathbf{R} \to \mathbf{R}$ is defined by

(A)
$$\int f = \sup \left\{ \int s : s \in \mathcal{S} \text{ and } 0 \le s \le f \right\}$$

(B) $\int f = \inf \left\{ \int s : s \in \mathcal{S} \text{ and } f \le s \right\}$
(C) both (A) and (B)
(D) none of these

12. Show there is an irrational number between any two rational numbers.

13. Suppose $f: [0,1] \to \mathbf{R}$ is continuous and f(c) > 0 for some $c \in (0,1)$. Show there is h > 0 such that |x - c| < h implies f(x) > 0.

14. State and prove Fatou's Lemma.

15. State and prove the Dominated Convergence Theorem.

- 16. Let $d(A, B) = \inf\{ |a b| : a \in A \text{ and } b \in B \}$ and \mathcal{M} be the collection of Lebesgue measurable sets. Prove one of the following:
 - (i) $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$ for $A, B \subseteq \mathbf{R}$ with d(A, B) > 0.
 - (ii) $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$ for $A, B \in \mathcal{M}$ with $A \cap B = \emptyset$.

17. Let $E \subseteq \mathbf{R}$ be a closed set and define

$$F = \left\{ x \in E : \text{there exists } \epsilon > 0 \text{ such that } (x - \epsilon, x) \cap E = \emptyset \right\}.$$

Prove or disprove the claim that F is countable.

- **18.** Prove or disprove one of the following:
 - (i) For $f, g \in \hat{C}$ define $f \equiv g$ to mean that $\lambda(\{x \in \mathbf{R} : f(x) \neq g(x)\}) = 0$. Prove or disprove the claim that \equiv is an equivalence relation.
 - (ii) For $A, B \in \mathcal{M}$ define $A \simeq B$ to mean that $\lambda((A \setminus B) \cup (B \setminus A)) = 0$. Prove or disprove the claim that \simeq is an equivalence relation.

19. For each $n \in \mathbf{N}$ define $E_n = [-2^n, 2^n]$ and let $f: \mathbf{R} \to \mathbf{R}$ be given by

$$f = \sum_{n=1}^{\infty} e^{-n} \chi_{E_n}.$$

Show that f is a well-defined non-negative Lebesgue measurable function and use the Monotone Convergence Theorem to find $\int f$.