Math 713 Final Version A

1. Let $I_{n}=(-1 / n, 1 / n)$ for $n \in \mathbf{N}$ and $U=\bigcap_{n=1}^{\infty} I_{n}$. Then
(A) $U=[-1,1]$
(B) $U=(-1,1)$
(C) $U=\{0\}$
(D) $U=\emptyset$
(E) none of these
2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. If $A \subseteq \mathbf{R}$ then
(A) $\left(f^{-1}(A)\right)^{c}=\{f(x): x \notin A\}$
(B) $\left(f^{-1}(A)\right)^{c}=\{f(x): x \in A\}$
(C) $\left(f^{-1}(A)\right)^{c}=\{x \in \mathbf{R}: f(x) \notin A\}$
(D) $\left(f^{-1}(A)\right)^{c}=\{x \in \mathbf{R}: f(x) \in A\}$
(E) none of these
3. The set \mathcal{S} of simple functions is equal to
(A) $\mathcal{S}=\left\{\sum_{k=1}^{n} a_{k} \chi_{E_{k}}: \quad n \in \mathbf{N}, \quad a_{k} \in \mathbf{R} \quad\right.$ and $\left.\quad E_{k} \in \mathcal{M}\right\}$
(B) $\mathcal{S}=\left\{\sum_{k=1}^{n} a_{k} \chi_{E_{k}}: \quad n \in \mathbf{N}, \quad a_{k} \geq 0 \quad\right.$ and $\left.\quad E_{k} \in \mathcal{M}\right\}$
(C) $\mathcal{S}=\left\{\sum_{k=1}^{\infty} a_{k} \chi_{E_{k}}: \quad a_{k} \in \mathbf{R} \quad\right.$ and $\left.\quad E_{k} \in \mathcal{M}\right\}$
(D) $\mathcal{S}=\left\{\sum_{k=1}^{\infty} a_{k} \chi_{E_{k}}: \quad a_{k} \geq 0 \quad\right.$ and $\left.\quad E_{k} \in \mathcal{M}\right\}$
(E) none of these
4. A set $F \subseteq \mathbf{R}$ is closed if $F=\bar{F}$. This is equivalent to saying F is closed if
(A) for every $x \in F$ there exists $r>0$ such that $[x-r, x+r] \subseteq F$
(B) for every sequence $x_{n} \in F$ and $x \in \mathbf{R}$ then $x_{n} \rightarrow x$ implies $x \in F$
(C) for every sequence $x_{n} \in F^{c}$ and $x \in \mathbf{R}$ then $x_{n} \rightarrow x$ implies $x \in F^{c}$
(D) every sequence $x_{n} \in F$ has a convergent subsequence
(E) none of these

Math 713 Final Version A

5. Let $D \subseteq \mathbf{R}$ and $f: D \rightarrow \mathbf{R}$. Suppose for every $a \in D$ and $\epsilon>0$ there is $\delta>0$ such that $b \in D$ and $|a-b|<\delta$ implies $|f(a)-f(b)|<\epsilon$. Then f must be
(A) continuous
(B) uniformly continuous
(C) differentiable
(D) both (A) and (B)
(E) both (A), (B) and (C)
6. Let $D \subseteq \mathbf{R}$ and $f_{n}: D \rightarrow \mathbf{R}$ for $n \in \mathbf{N}$. Suppose for every $\epsilon>0$ there is $N \in \mathbf{N}$ such that $n, m \geq N$ and $x \in D$ implies $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$. Then the sequence f_{n} of real valued functions must be
(A) pointwise convergent
(B) uniformly convergent
(C) differentiable
(D) both (A) and (B)
(E) both (A), (B) and (C)
7. Given an interval I let $\ell(I)$ be its length. For each subset $A \subseteq \mathbf{R}$, the Lebesgue outer measure of A, denoted by $\lambda^{*}(A)$, is defined by
(A) $\quad \lambda^{*}(A)=\inf \left\{\sum_{n} \ell\left(I_{n}\right): I_{n}\right.$ are open intervals where $\left.A \subseteq \bigcap_{n} I_{n}\right\}$
(B) $\quad \lambda^{*}(A)=\inf \left\{\sum_{n} \ell\left(I_{n}\right): I_{n}\right.$ are open intervals where $\left.A \subseteq \bigcup_{n} I_{n}\right\}$
(C) $\quad \lambda^{*}(A)=\sup \left\{\sum_{n} \ell\left(I_{n}\right): I_{n}\right.$ are open intervals where $\left.A \supseteq \bigcap_{n} I_{n}\right\}$
(D) $\quad \lambda^{*}(A)=\sup \left\{\sum_{n} \ell\left(I_{n}\right): I_{n}\right.$ are open intervals where $\left.A \supseteq \bigcup_{n} I_{n}\right\}$
(E) none of these
8. Let \hat{C} be the collection of Borel measurable functions, \mathcal{B} the set of Borel measurable sets and τ the collection of open sets in \mathbf{R}. Then
(A) $\hat{C}=\left\{f: \mathbf{R} \rightarrow \mathbf{R}\right.$ such that $f^{-1}(B) \in \mathcal{B}$ for every $\left.B \in \mathcal{B}\right\}$
(B) $\hat{C}=\left\{f: \mathbf{R} \rightarrow \mathbf{R}\right.$ such that $f^{-1}(O) \in \mathcal{B}$ for every $\left.O \in \tau\right\}$
(C) $\hat{C}=\left\{f: \mathbf{R} \rightarrow \mathbf{R}\right.$ such that $f^{-1}(a) \in \mathcal{B}$ for every $\left.a \in \mathbf{R}\right\}$
(D) both (A) and (B)
(E) both (A), (B) and (C)

Math 713 Final Version A

9. The collection of Lebesgue mesaureable sets \mathcal{M} is defined to be
(A) $\mathcal{M}=\left\{E \subseteq \mathbf{R}: \lambda^{*}(W)=\lambda^{*}(W \cap E)+\lambda^{*}\left(W \cap E^{c}\right)\right.$ for every $\left.W \subseteq \mathbf{R}\right\}$
(B) $\mathcal{M}=\left\{E \subseteq \mathbf{R}: \lambda^{*}(W)=\lambda^{*}(W \cap E)+\lambda^{*}\left(W^{c} \cap E\right)\right.$ for every $\left.E \subseteq \mathbf{R}\right\}$
(C) $\mathcal{M}=\left\{W \subseteq \mathbf{R}: \lambda^{*}(W)=\lambda^{*}(W \cap E)+\lambda^{*}\left(W \cap E^{c}\right)\right.$ for every $\left.E \subseteq \mathbf{R}\right\}$
(D) $\mathcal{M}=\left\{W \subseteq \mathbf{R}: \lambda^{*}(W)=\lambda^{*}(W \cap E)+\lambda^{*}\left(W^{c} \cap E\right)\right.$ for every $\left.E \subseteq \mathbf{R}\right\}$
(E) none of these
10. In the following true false questions \hat{C} is the set of Borel measurable functions, \mathcal{B} is the collection of Borel measurable sets, λ^{*} is the Lebesgue outer measure and \mathcal{M} is the set of Lebesgue measurable sets.
(i) If $f: \mathbf{R} \rightarrow \mathbf{R}$ is Lebesgue measureable then is must be Borel measurable.
(A) true
(B) false
(ii) Suppose

$$
x=\sum_{k=1}^{\infty} \frac{d_{k}}{10^{k}} \quad \text { and } \quad y=\sum_{k=1}^{\infty} \frac{e_{k}}{10^{k}} \quad \text { where } \quad d_{k}, e_{k} \in\{0,1,2, \ldots, 9\} .
$$

If $x \leq y$ then $d_{1} \leq e_{1}$.
(A) true
(B) false
(iii) If $\lambda^{*}(E)=0$ then $E \in \mathcal{M}$.
(A) true
(B) false
11. Let \mathcal{S} be the set of simple functions. The Lebesgue integral of a positive function $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by
(A) $\int f=\sup \left\{\int s: \quad s \in \mathcal{S}\right.$ and $\left.0 \leq s \leq f\right\}$
(B) $\int f=\inf \left\{\int s: \quad s \in \mathcal{S}\right.$ and $\left.f \leq s\right\}$
(C) both (A) and (B)
(D) none of these

Math 713 Final Version A

12. Show there is an irrational number between any two rational numbers.
13. Suppose $f:[0,1] \rightarrow \mathbf{R}$ is continuous and $f(c)>0$ for some $c \in(0,1)$. Show there is $h>0$ such that $|x-c|<h$ implies $f(x)>0$.

Math 713 Final Version A
14. State and prove Fatou's Lemma.

Math 713 Final Version A
15. State and prove the Dominated Convergence Theorem.

Math 713 Final Version A

16. Let $d(A, B)=\inf \{|a-b|: a \in A$ and $b \in B\}$ and \mathcal{M} be the collection of Lebesgue measurable sets. Prove one of the following:
(i) $\lambda^{*}(A \cup B)=\lambda^{*}(A)+\lambda^{*}(B)$ for $A, B \subseteq \mathbf{R}$ with $d(A, B)>0$.
(ii) $\lambda^{*}(A \cup B)=\lambda^{*}(A)+\lambda^{*}(B)$ for $A, B \in \mathcal{M}$ with $A \cap B=\emptyset$.

Math 713 Final Version A

17. Let $E \subseteq \mathbf{R}$ be a closed set and define

$$
F=\{x \in E: \text { there exists } \epsilon>0 \text { such that }(x-\epsilon, x) \cap E=\emptyset\} .
$$

Prove or disprove the claim that F is countable.

Math 713 Final Version A

18. Prove or disprove one of the following:
(i) For $f, g \in \hat{C}$ define $f \equiv g$ to mean that $\lambda(\{x \in \mathbf{R}: f(x) \neq g(x)\})=0$. Prove or disprove the claim that \equiv is an equivalence relation.
(ii) For $A, B \in \mathcal{M}$ define $A \simeq B$ to mean that $\lambda((A \backslash B) \cup(B \backslash A))=0$. Prove or disprove the claim that \simeq is an equivalence relation.

Math 713 Final Version A
19. For each $n \in \mathbf{N}$ define $E_{n}=\left[-2^{n}, 2^{n}\right]$ and let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by

$$
f=\sum_{n=1}^{\infty} e^{-n} \chi_{E_{n}}
$$

Show that f is a well-defined non-negative Lebesgue measurable function and use the Monotone Convergence Theorem to find $\int f$.

