## Math 713 Homework 3 Extra Credit Solution

5. Let $f$ be a real valued function defined on the interval $[a, b]$. Let

$$
B=\left\{c: \lim _{x \rightarrow c} f(x)=L \text { exists but } L \neq f(c)\right\}
$$

be the set of removable discontinuities of $f$. Prove or disprove the claim that $B$ is a countable set.

Proof: Let

$$
P_{n}=\left\{c \in B: \lim _{x \rightarrow c} f(x)>f(c)+\frac{1}{n}\right\}
$$

and

$$
P_{n, m}=\left\{c \in P_{n}: x \in[a, b] \text { and } 0<|x-c|<\frac{1}{m} \text { implies } f(x)>f(c)+\frac{1}{n}\right\} .
$$

Similarly, let

$$
Q_{n}=\left\{c \in B: \lim _{x \rightarrow c} f(x)<f(c)-\frac{1}{n}\right\}
$$

and

$$
Q_{n, m}=\left\{c \in Q_{n}: x \in[a, b] \text { and } 0<|x-c|<\frac{1}{m} \text { implies } f(x)<f(c)-\frac{1}{n}\right\} .
$$

Then

$$
B=\bigcup_{n=1}^{\infty} P_{n} \cup \bigcup_{n=1}^{\infty} Q_{n}=\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} P_{n, m} \cup \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} Q_{n, m}
$$

Claim that $P_{n, m}$ and $Q_{n, m}$ are finite for each $n, m \in \mathbf{N}$. Suppose $P_{n, m}$ was not finite. Then there would exist a sequence of distinct elements $c_{k} \in P_{n, m}$. Since $c_{k}$ lies in the domain of $f$ then it is bounded. Therefore, $c_{k}$ possesses a convergent subsequence $c_{k_{j}}$. Since $c_{k_{j}}$ converges as $j \rightarrow \infty$ then it is Cauchy. Therefore, there is $N$ large enough such that $\left|c_{k_{N}}-c_{k_{N+1}}\right|<1 / m$. Denote $\alpha=c_{k_{N}}$ and $\beta=c_{k_{N+1}}$. Now, since $\alpha \in P_{n, m}$ then

$$
0<|\beta-\alpha|<1 / m \quad \text { implies } \quad f(\beta)>f(\alpha)+1 / n
$$

and since also $\beta \in P_{n, m}$ then

$$
0<|\alpha-\beta|<1 / m \quad \text { implies } \quad f(\alpha)>f(\beta)+1 / n
$$

It follows that $f(\beta)-f(\alpha)>1 / n>-1 / n>f(\beta)-f(\alpha)$ which is a contradiction. Therefore $P_{n, m}$ is finite. Similarly, $Q_{n, m}$ is finite.

Since $B$ is the countable union of a countable union of finite sets, then it is countable. This shows that the set of removable discontinuities of $f$ is countable.

