Reviews summary
Discussion of

* for every or all \exists there exists,

Recall the definition of hamite. Jet $f: D \rightarrow \mathbb{R}$ then

$$
\lim _{x \rightarrow a} f(x)=L
$$

means

$$
\forall \varepsilon>07 \delta>0 \text { st, } x \in D \text { and } 0<|x-a|<\delta
$$

$$
\text { implies }|f(x)-h|<\varepsilon
$$

Breaking this down in pieces $\forall \varepsilon>0$ then $p(\varepsilon)$ is true where pie) is the proposition

$$
P(\varepsilon)=" \exists \delta>0 \text { set, } x \in D \text { and } 0<|x-a|<\delta
$$

implies $|f(x)-L|<\varepsilon$,"
Let's make a simpler example.

Suppose
$p(n)=" n$ is even"
and $D=\{1,2,3,4\}$. Then
$q=" \forall n \in D$ then $p(n)$ is true" is a false proposition. That is
q is false means
not q is true.
What is not q? To negate
4 changes to \exists and \exists changes to \forall. Thus
not $q=" \exists n \in D$ s.t. $p(n)$ is false"
In particular
$3 \in D$ and $p(3)$ is false so not q is true.

Let $E=\{2,4,16\}$. Them
$r=\forall n \in E$ then $p(n)$ is true" means
$p(2)$ is true
$p(4)$ is true
$p(16)$ is true.
Therefore r is a true proposition. More information about the universal and existential quantifiers \forall and \exists is taughtinmath 373.

Discussion about the Lindelof's theorem
Let of be a collection of open sets. Then there is a countable subcollection $\left\{O_{1}, O_{2,}, O_{3}, \ldots\right\} \subseteq g$ such that

$$
\bigcup_{O \in \theta} O=\bigcup_{n} O_{n}
$$

How to find a countable subcollection.

Try something to do with (Q.

Here is an idea.
Let $P=\mathbb{Q} \cap \bigcup_{D \in Q} 0$.
Then P is countable and $P \subseteq \bigcup_{O \in Q} 0$. Theirs
$\forall r \in P$ these is $O_{r} \in Q$ set $r \in O_{r}$.
Is it true that

$$
\bigcup_{r \in P} O_{r}=\bigcup_{0 \in \vartheta} 0 ?
$$

clearly $\bigcup_{r \in P} O_{r} \subseteq \bigcup_{0 \in O} 0$.
What about the reverse inequality?

$$
\mathbb{Q} \cap \bigcup_{O \in Q} 0=P=\bigcup_{r \in P}\{r\} \subseteq \bigcup_{r \in P} O_{r}
$$

Therefore

$$
\mathbb{Q}_{0 \in O}^{\cup O} \subseteq \bigcup_{r \in P} O_{r} \subseteq \bigcup_{0 \in Q} 0
$$

This $A=\bigcup_{r \in P} O_{r}$ and $B=\bigcup_{O \in Q} 0$ are open sets such that $A \cap \mathbb{Q}_{1}=B \cap \mathbb{R}$.
Does it follow that $A=B$?
unfortunately, in general

$$
\bigcup_{r \in P} O_{r} \neq \bigcup_{0 \in \partial} 0
$$

Can you find a counter example?
Let $\vartheta=\{(0, \sqrt{2}),(\sqrt{2}, 2),(0,2)\}$.
Then

$$
\bigcup_{0 \in 9} O=(0,2)
$$

For each $r \in \mathbb{Q} \cap(0,2)$ define

$$
O_{r}= \begin{cases}(0, \sqrt{2}) & \text { if } r<\sqrt{2} \\ (\sqrt{2}, 2) & \text { if } r>\sqrt{2}\end{cases}
$$

then $r \in$ Or but

$$
\bigcup_{r \in Q \cap(0,2)} O_{r}=(0, \sqrt{2}) \cup(\sqrt{2}, 2)
$$

which is different that $(0,2)$,
Does anyone want to see a correct proof of the hindelöf theorem?

Proof of Undelit Theruns.
Need to do something for each $x \in \bigcup_{0 \in 0} 0$ since it didn't work to only work io th ratimals here. Thus,

$$
\forall x \in \bigcup_{0 \in 9} 0 \text { thereis } O_{x} \in G \text { sit. } x \in O_{x}
$$

since O_{x} is open there is $r_{x}>0$ such that

$$
\left(x-r_{x}, x+r_{x}\right) \subseteq O_{x}
$$

In pictures

Since Q is dense there are $\alpha_{x}, \beta_{x} \in Q$ such tho

$$
x \in\left(\alpha_{x}, \beta_{x}\right) \subseteq\left(x-r_{x}, x+r_{x}\right) \subseteq 0_{x}
$$

Let $e=\left\{\left(\alpha_{x}, \beta_{x}\right) ; x \in \bigcup_{0 \in 9} 0\right\}$. Since the endpoints ane rational then C is countable. Thus

$$
e=\left\{I_{1}, I_{2}, I_{3}, \ldots\right\}
$$

For each $n \in \mathbb{N}$ there is $x_{n} \in \bigcup_{0 \in 9} 0$ such that

$$
I_{n}=\left(\alpha_{x_{n}}, \beta_{x_{n}}\right)
$$

Setting $U=\bigcup_{0 \in G} 0$. Then

$$
\begin{aligned}
S & =\bigcup_{x \in V}\{x\} \subseteq \bigcup_{x \in V}\left(\alpha_{x}, \beta_{x}\right)=\bigcup_{I \subseteq E} I \\
& =\bigcup_{n=1}^{\infty} I_{n}=\bigcup_{n=1}^{\infty}\left(\alpha_{x_{n},}, \beta_{x_{n}}\right) \subseteq \bigcup_{n=1}^{\infty} O_{x_{n}}
\end{aligned}
$$

Therefore

$$
\bigcup_{0 \in \theta} 0=\bigcup_{n=1}^{\infty} O_{x_{n}}
$$

finishes the proof.

Discussion of Theoum 2.7
A bounded function on $[a, b]$ is Riemann integrable it and only if the set of points of discontinuity has measure zero.

Can you prone the simpler theorem?
A continuous function on $[a, b]$ is riemann integrable.
What do we know about continuous functions $f:[a, b] \rightarrow \mathbb{R} ?$
(1) bounded,
(2) attains maximum and minimum,
(3) uniformly continuous.

These are those hard theorems from the beginning of an advanced calculus class.

Recall

$$
\begin{aligned}
& \int_{a}^{b} f=\sup \left\{\int_{a}^{b} h: h \text { isasteptunction and } h \leq f\right\} \\
& \int_{a}^{b}=\inf \left\{\int_{a}^{b} h: h \text { is asteptunction and } f \leqslant h\right\}
\end{aligned}
$$

Drawapicture $\quad h_{l} \leqslant f \leqslant h_{u}$

Then by definition

$$
\int_{a}^{b} h_{e} \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b} h_{u}
$$

We are trying to show that

$$
\int_{a}^{b} f=\int_{a}^{b} f
$$

Thus in the picture

$$
\int_{a}^{b} f-\int_{a}^{b} f \leqslant \int_{a}^{b} h_{u}-\int_{a}^{b} h_{2}=\sum_{i=1}^{n} \text { aria of } \square_{i}
$$

where \square_{i} ane the white rectangles which are made from the differences between the tall rectangles and the short ones.

Nour use the continuity to make this sum less than ε.

Let $\varepsilon>0$. Since $f ;[a, b] \rightarrow \mathcal{R}$ is wnitomly Continuous, then for $\varepsilon_{2}=?>0$ there is $\delta_{2}>0$ such that $|x-y|<\delta_{2}$ implies $|f(x)-f(y)|<\varepsilon_{2}$
Choose n so large that $\delta=\frac{b-a}{n}<\delta_{2}$. Them

or in otherwords
area of $\square_{i}=\varepsilon_{2} \delta$
Since there are $n=\frac{b-a}{\delta}$ rectangles, then

$$
\int_{a}^{b} f-\int_{a}^{b} f \leqslant \sum_{i=1}^{n} \varepsilon_{2} \delta=\frac{b-a}{\delta /} \varepsilon_{2} \delta=(b-a) \varepsilon_{2}=\varepsilon
$$

when we have chosen ? for $\varepsilon_{2}=\frac{\varepsilon}{b-a}$.
Since $\varepsilon>0$ is arbitrary, then

$$
\int_{a}^{b} f=\int_{a}^{b} f
$$

which shows that f is Riemann integrable,

What about discontinuities?

GUt B be the bound for f. Then for an interval I about the discontimity

$$
\begin{aligned}
& \sup \{f(x)-f(y):: x, y \in I\} \leqslant 2 B, \\
& \text { Let } A=\left\{x_{0} \in[a, b]: \lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)\right\} \text { and } \\
& \\
& \lambda^{*}(A)=0 .
\end{aligned}
$$

Then for $\varepsilon>0$ then are open intervals. In such that

$$
A \subseteq U I_{n} \text { and } \sum l\left(I_{n}\right)<\varepsilon \text {. }
$$

Leaving out a bunch of details we have an extra term in the previous estimate of the form

$$
\sum l\left(I_{n}\right) 2 B=2 B \varepsilon .
$$

which can be made small because $\lambda^{*}(A)=0$.

Example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at every irrational number and discontinuous at every rational.

$$
f(x)= \begin{cases}\frac{1}{q} \text {; if } x=\frac{p}{q} \text { where } p \text { and } q \text { have } \\ \text { no common divisors }\end{cases}
$$

If $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$ then

$$
\lim _{x \rightarrow x_{0}} f(x)=0=f\left(x_{0}\right)
$$

therefore f is continuous on $\mathbb{R} \backslash \mathbb{Q}$,
Claim if a is irrational and $\frac{p_{n}}{q_{n}} \rightarrow a$ as $n \rightarrow \infty$ then $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

How to prove the claim?
No idea? Try prot by contradiction.

Suppose for some $N \geqslant 1$ that $q_{n} \in\{1,2,3, \ldots, N\}$ for all $n \in \mathbb{N}$. Then define

$$
\begin{aligned}
H_{1} & =\left\{n: q_{n}=1\right\} \\
H_{2} & =\left\{n: q_{n}=2\right\} \\
\vdots & \\
H_{N} & =\left\{n: q_{n}=N\right\} .
\end{aligned}
$$

Since

$$
\mathbb{N}=\bigcup_{n=1}^{N} H_{n}
$$

then the pigeonhole principle implies there is k_{0} suse that $H_{k_{0}}$ is infinite.

Pigeon hole principle: If an infinite number of pigeons fly home into a finite number of pigeonholes, then at least one pigeonhole must contain an infinite number of pigeons.

Since H_{k} is countable then

$$
H_{k_{0}}=\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}
$$

Where $n_{1}<n_{2}<n_{3}<\cdots$.

It follows that the subsequence

$$
\frac{P_{n_{k}}}{q_{n_{k}}}=\frac{p_{n_{k}}}{k_{0}} \rightarrow a \quad \text { as } \quad k \rightarrow \infty \text {, }
$$

Claim that $P_{n_{k}}$ is eventually constant Since $\frac{P_{n_{k}}}{K_{0}}$ is convergent it is Candy. Let $\varepsilon=\frac{1}{2 k_{0}}$. Then there is $K \geqslant 1$ such that $\left|\frac{P_{n_{k}}}{k_{0}}-\frac{P_{n_{2}}}{k_{0}}\right|<\frac{1}{2 K_{0}}$ for $k, l \geqslant K_{0}$

This means

$$
\left|P_{n_{k}}-P_{n_{l}}\right|<\frac{1}{2} \quad \text { for } k, l \geqslant k
$$

Since $P_{n_{k}}$ are integers, the only way this is possible is if $P_{r_{k}}$ is constant for $k \geqslant K$. But then

$$
\frac{P_{n_{K}}}{K_{0}}=a
$$

contradicts that a is irrational. Therefore $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Let $E \subseteq \mathbb{R}$. Show that the set of accumulation points

$$
E^{\prime}=\{x \in \mathbb{R}: \forall \varepsilon>0 \exists y \in E \text { sit. } 0<|y-x|<\varepsilon\}
$$

is closed.
Thus we want to show $E^{\prime}=\overline{E^{\prime}}$.
Clearly $E^{\prime} \subseteq E^{\prime}$.
Thus it is enough to show $E^{\prime} \subseteq E^{\prime}$ '.
By definition

$$
F^{\prime}=\left\{x \in \mathbb{R}: V \varepsilon>0 \exists z \in E^{\prime} \text { st, }|z-x|<\varepsilon\right\}
$$

Let $x \in \overline{E^{\prime}}$. Claim $x \in E^{\prime}$.
Let $\varepsilon>0$. Since $x \in \bar{E}^{\prime}$ then for $\varepsilon_{2}=\varepsilon / 2>0$ there is $z \in E^{\prime \prime}$ st. $|z-x|<\varepsilon_{2}$.

Since $z \in E^{\prime}$ then for $\varepsilon_{3}=\varepsilon / 2>0$
there is $y \in E$ st, $|y-z|<\varepsilon_{3}$.
Now $|x-y| \leq|x-z|+|z-y|<\varepsilon_{2}+\varepsilon_{3}=\varepsilon$
Implies that $x \in E^{\prime}$. Thus E^{\prime} is closet.
There is an error here because we need to also show that $|\mathrm{x}-\mathrm{y}|>0$. A correction appears in the addendum to these notes.

That proof is like the proof that
If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous,

If we use the $\varepsilon-\delta$ definition of contimity the is ε_{2} and ε_{3} which come from the two by pothesis involving limits.

Can you think of any easier way to prove this result wing what we have learned in 713?
Proof: Let $D \subseteq \mathbb{R}$ be open. Then $f^{-1}(0) \subseteq \mathbb{R}$ is open because $f: R \rightarrow R$ is continuous. Tet $U=f^{-1}(0)$. Then $g^{-1}(U) \subseteq \mathbb{R}$ is open because $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Thus

$$
(f \circ g)^{-1}(0)=g^{-1}\left(f^{-1}(0)\right)=g^{-1}(0)
$$

is open implies fog is continuous.

Examples of sets of measure zero

$$
\lambda^{*}(A)=\operatorname{in}\left\{\sum_{n} l\left(I_{n}\right): I_{n} \text { are openintivals and } A \subseteq \bigcup_{n} I_{n}\right\}
$$

Focample 1

$$
\begin{aligned}
& A=\{1\} \\
& \rightarrow I_{1} \in
\end{aligned}
$$

Let $\varepsilon>0$ and

$$
\lambda^{*}(l \xi) \leqslant \ell\left(I_{1}\right)=\varepsilon
$$

Since ε is arbitrary the $\lambda^{*}(\{1\})=0$.

Example 2
Set $\varepsilon>0$ and

$$
\begin{array}{r}
A=\{1,2\} \\
\rightarrow(1)=(+1) \\
\rightarrow x_{x_{1}}^{2}=\frac{1}{2}^{2}
\end{array}
$$

$$
\begin{aligned}
& I_{1}=\left(1-\frac{\varepsilon}{4}, 1+\frac{\varepsilon}{4}\right) \\
& I_{2}=\left(1-\frac{\varepsilon}{4}, 1+\frac{\varepsilon}{4}\right) \quad \text { them } \\
& \lambda^{*}(\{1,2\}) \leq l\left(I_{1}\right)+l\left(I_{2}\right)=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Since ε is anbitrary then

$$
\lambda^{*}(\{1,2\})=0
$$

Example 3 Let $\varepsilon>0$ and

$$
\begin{aligned}
& A=\mathbb{N} \quad I_{n}=\left(n-\frac{\varepsilon_{n}}{2}, n+\frac{\varepsilon_{n}}{2}\right), \text { then } \\
& \lambda^{*}(\mathbb{N}) \leqslant \sum l\left(I_{n}\right)=\sum_{n=1}^{\infty} \varepsilon_{n}
\end{aligned}
$$

Can you find a sequence ε_{n} such that

$$
\sum_{n=1}^{\infty} \varepsilon_{n} \leq \varepsilon^{?}
$$

How about $\varepsilon_{n}=\frac{1}{n^{2}}$?

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Which might be bigger than ε.
The sequel ε_{n} needs to depend on ε.
How about $\varepsilon_{n}=\frac{\varepsilon}{2^{n}}$?

$$
\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}}=\varepsilon .
$$

Another sequence $\varepsilon_{n}=\frac{6 \varepsilon}{\pi^{2} n^{2}}$

$$
\sum \frac{6 \varepsilon}{\pi^{2} n^{2}}=\varepsilon
$$

In general if $a_{n}>0$ and $\sum a_{n}=L<\infty$ then

$$
\varepsilon_{n}=\frac{\varepsilon}{L} a_{n}
$$

given

$$
\sum \varepsilon_{n}=\frac{\varepsilon}{h} \sum a_{n}=\frac{\Sigma}{L} L=\varepsilon
$$

Hints for the extra credit problem.
Show that the set of chester points of $x_{n}=\sin (n)$ is $[-1,1]$.
Heat 1
since x_{n} is bounded it has.
a convergent subsequmce $x_{n_{k}} \rightarrow x \in[-1,1]$.
Hex 2
for each n define w_{n} to be the number such that $\omega_{n} \in[0,2 \pi]$ and $\sin (x)=\sin \left(\omega_{1}\right)$
Thus $w_{n}=n-2 \pi k$ where x lies in the interval.

claim w_{n} is a sequence of distinct points.
For contradiction suppose $\omega_{n}=20 \mathrm{~m}$ for some $n \neq m$. By definition there is k_{n} and K_{m} integers such that

$$
w_{n}=n-2 \pi k_{n} \text { and } w_{m}=m-2 \pi k_{m} \text {. }
$$

But then-

$$
n-m=2 \pi\left(K_{n}-k_{m}\right)
$$

Since $n \neq m$ then $k n \neq k_{m}$, Dividing gives that

$$
\eta=\frac{n-m}{2\left(R_{n}-k m\right)}
$$

contradicting that π is irrational. Thus w_{n} is a sequence of distinct points

