hast time we tried to prove:
Chin: If $f_{n} \rightarrow f$ uniformly on (a, b) and f_{n} is differentiable them $f_{n}^{\prime} \rightarrow f^{\prime}$ '. and failed. Lets think about a counterexample. How about $f_{n}(x)=\frac{\sin n x}{m}$

Them $f_{n} \rightarrow 0$ uniformly but $f_{n}^{\prime}(x)=\cos n x$, so the derivatives doit converge.

The counter example was easy. What is the cornet therm? Did anyone Wok it up?

Here is one theorem from Dangello and Seyoried "Introductory Real Analysis" page 177:

Theorem 8.4. Suppose f_{n} is a sequence of differentiable functions defined on a bounded interval I and that $f_{n}\left(x_{0}\right)$ converges for some point $x_{0} \in I$. If I_{n}^{\prime} converges uniformly on I, then f_{n} converges uniformly on I to a differentiate function F and $F^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ fo all $x \in I$.
This theorem is also proved in William Wade, "Introduction to Analysis 3rd Ed" as Theorem 7.12 on page 189.

This theorem assumes that f_{n}^{\prime} already converge unisoumh so it should be Lots easier to prove, especially since the claim we tried to prove yesterday wis false.

Only 4 people came. On Monday we will discuss whether to continue meeting on Saturday amd ahethen to change the time.

Hints on how to show a monotone function is Borer meadurate

Ne will prove on Monday that it

$$
f=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \text { st } f^{-1}((-\infty, a)) \in B \text { for } a \in \mathbb{R}\right\}
$$

then $\hat{0}=\hat{\mathbf{C}}$. Recall that

$$
\hat{b}=\left\{A: x_{A} \in \hat{C}\right\}
$$

and that $\tau \subset \beta$ where

$$
\tau=\{0 \subseteq \mathbb{R}: 0 \text { is an open set }\}
$$

Let's get some intuition by looking at some examples of monotone functions.

Example 1: $f(x)=1$. Then

$$
f^{-1}((-\infty, a))=\left\{\begin{array}{lll}
\mathbb{R} & \text { if } & a \geqslant 1 \\
\varnothing & \text { if } & a<1
\end{array}\right.
$$

Since \mathbb{R} and \varnothing are open then $\mathbb{R} \in \mathcal{B}$ and $\phi \in B$. It follows that f is Bore measurable; because this implies $f \in J$ and from what we will show on Monday, $F=\hat{C}$.

Example 2; $f(x)=\arctan x$

Them

$$
f^{-1}((-\infty, a))= \begin{cases}\mathbb{R} & \text { if } a \geqslant \pi / 2 \\ (-\infty, \tan a) & \text { if }-\frac{\pi}{2}<a<\frac{\pi}{2} \\ \varnothing & \text { if } a \leq-\pi / 2\end{cases}
$$

Therefore $f^{-1}((-\infty, a))$ is either $R,(-\infty, \tan a)$ on \varnothing. Since B contains the gen sets and all there sets are open then $f((-\infty, a)) \in \Omega$ for any $a \in \mathbb{R}$, It follows that $f \in \mathcal{A}=\hat{C}$.

Example 3

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x>0 \\
0 & \text { if } & x \leq 0
\end{array}\right.
$$

1

Then

$$
f^{-1}((-\infty, a))= \begin{cases}\mathbb{R} & \text { if } a \geq 1 \\ (-\infty, 1] & \text { if } 0 \leq a<1 \\ \varnothing & \text { if } a<0\end{cases}
$$

Since β is a σ-algebra thun it is closed under complements. Thus β also contains the closed sets. Since $f^{-1}((-\infty, a)) \in \mathcal{F}$ foll a $\in \mathbb{B}$ then $f \in \hat{C}$.

Example $A \quad f(x)=[x]$ the opeatest integer less than on equal x. Then

and

$$
f^{-1}((-\infty, a))=(-\infty,-[-a])
$$

check this

$$
\begin{aligned}
& f^{-1}((-\infty, 1))=(-\infty, 1) \\
& f^{-1}((-\infty, 1.5))=(-\infty,-[-1.5])=(-\infty, 2) \\
& f^{-1}((-\infty,-.5))=(-\infty,-[0.5])=(-\infty, 0)
\end{aligned}
$$

Since $(-\infty,-[-a]) \in \mathcal{B}$ for every $a \in g$ then we have $f \in \hat{C}$.

What do you notice about $f^{-1}((-\infty, a))$ for all the examples discussed?

That $f^{-1}((-\infty, a))$ is some sort of open or closed unbounded interval or \varnothing.

If we can prove that $f^{-1}((-\infty, a))$ is always a set of the four

$$
\mathbb{R},(-\infty, \beta),(-\infty, \beta],(\alpha, \infty),[\alpha, \infty) \text { or } \varnothing
$$ then we have shown that $f \in \mathcal{F}$ and since $F=\hat{C}$ this implies f is fore measurable.

All the examples were monotone nondecreasing. If f is monotone non increasing them $-f$ is monotone nondecreasing. Moreover if $-f \in \hat{C}$, then since \hat{C} is an algebra of functions it follows that $-(-f)=f \in \hat{C}$. Thus it is sufficient to consider only monotone non decreasing functions.

Claim: If f is monotone non-decreasing then for each $a \in \mathbb{R}$ we have $f^{-1}((-\infty, a))$ is either \mathbb{R}, \varnothing on there is some β such that $f^{-1}((-\infty, a))$ is $(-\infty, \beta)$ an $(-\infty, \beta]$.

If this claim is proven this shows that any monotone non-decreasing function is Boil measureatle. and consequently that any monotone function is Boil measurable.
Sketch of proof. Given $a \in \mathbb{R}$
If $\left.f^{-1}(c-\infty, a)\right)=\varnothing$ we are done, otherwise let $\beta=\sup f^{-1}((-\infty, a))$
If $\beta=\infty$ claim that $f^{-1}((-\infty, a))=\mathbb{R}$
... details...
If $\beta<\infty$ claim that

$$
(-\infty, \beta) \subseteq f^{-1}((-\infty, a)) \subseteq(-\infty, \beta]
$$

". details...
and there fore $\left.f^{-1}(1-\infty, a)\right)$ is lither $(-\infty, \beta)$ or $(-\infty, \beta]$.

An alternative approach would be to show that a monotone function is sol measurable dinectly using the definition of c.

Recall: \hat{C} is the smallest collection of functions closed under pointuise limits that contains the continuous functions.

In particular if f_{n} are continuous and $f_{n} \rightarrow f$ pointwise them $f \in \hat{C}$. Note, however, there may be functions in \hat{C} that an not the pointwise limit of continuous functions. Inductively we could define

$$
\begin{aligned}
& S_{0}=C \\
& S_{k+1}=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \text { st. } \begin{array}{l}
f_{n} \rightarrow f \text { pointwise for } \\
\text { some sequence } f_{n} \in S_{k}
\end{array}\right\}
\end{aligned}
$$

Then $S_{0} \leq S_{1} \subseteq S_{2} \subseteq \cdots$ and $S_{0} \neq S_{1} \neq S_{2} \notin \cdots$.
Question: $I S$: $\hat{C}=\bigcup_{k=0}^{\infty} S_{k} ?$
It is possie to construct \mathbb{C} using transfinite induction. This may help answer the above question.

Another question: Let

$$
m=\{f: \mathbb{R} \rightarrow \mathbb{R} \text { st } f \text { is monotone }\}
$$

We know that om $\subset \hat{C}$.

Is it true that $9 m \subseteq s_{1}$?
If not, is $m \subseteq S_{2}$?
This is a more difficult question than the homeurock question. still it is interesting. I almost with I had put is as extra credit on the next homework. Now if $m \leq s$, this would imply om $\mathcal{C} \hat{C}$, but how could one show M CS.
Suppose $f(x)= \begin{cases}1 & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}$
then

$$
f_{n}(x)=\left\{\begin{array}{ccc}
1 & \text { for } & x>\frac{1}{n} \\
n x & \text { for } & 0 \leq x \leq \frac{1}{n} \\
0 & \text { don } & x \leq 0
\end{array}\right.
$$

are continuous and $f_{n} \rightarrow f$ point wise

On the other hand if

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { for } & x \geqslant 0 \\
0 & \text { for } & x<0
\end{array}\right.
$$

then

$$
f_{n}(x)=\left\{\begin{array}{lll}
1 & \text { for } & x \geqslant 0 \\
1-n x & \text { for } & -\frac{1}{n}<x<0 \\
0 & \text { for } & x \leqslant \frac{1}{n}
\end{array}\right.
$$

are continuous and $f_{n} \rightarrow f$ pointurise.
In pictures these ane two cases.

and

There are then kinds of jump discontinuities a monotone function might shave.
"For example

We know from a similar pros to the extra credit problem on the previous Promenoel that the set of jump discontinuities is countable.

Is it possible to create a sequence of functions using some sort of diagonalization m induction argument to show any monotone function is the pontwise Limit of continuous functions. On the other hand, just treating one jump discontinuity involved a number of different cases so perhaps there are monotone functions which ane wot the point wise limit of entinuous fundions.

If might be intrusting to try searching on the internet or posting in one of the mathematics and science forums to find an answer.

We know R is uncountable and that the polynomials. $\mathbb{P}=\bigcup_{n=1}^{\infty} \mathbb{P}_{n}$ where \mathbb{P}_{n} is the set of polynomials with degree less than or equal n.

Since each $\mathbb{P}_{n} \sim \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n+1 \text { times }} \circ \mathbb{R}$
then is it true that

$$
\mathbb{P}=\bigcup_{n=1}^{\infty} \mathbb{P}_{n} \sim \mathbb{R}
$$

Since each function in C may be rouitten as the limit of polynomials is it true that $\subset \sim \mathbb{R}$?
If so, what about \hat{C} ?
Is $\hat{C} \cup \mathbb{R}$?
These questions are related to the study of ordinal and cardinal numbers. Sonic analysis books spend more time than ours on this topic. You may also study ordinal and cardinal number is a set theory or logic course

