How did the reading go?
We are still needing to show s $\subseteq M$. I an not going to prove this today but instead finish the section on the Cantor set and singular function.

Please continue to read the section in the book from pages 113 to 116 that give the proof that BCM. Weill talk about this more next week, Hopefully there will not he much to explain and we can start working on the integral.

So far we have defined $P=\bigcap_{n=1}^{\infty} P_{n}$ where
vector per at P_{1}
P_{2}
etc."

Betove going further, lets characterize P in terms of what is called ternary expansions.

Recall that the decimal expansion of a point on the number line can be obtained by subdividing the units by 10 and them repeatedly subdividing by 10 as follows

Thus $x=, 3$ \square
Then further subdividing.

Thus $x=34[$?

The only reason to subdivide by 10 is because people have 10 fingers.

Obvious then way of subdividing each. unit can be moue convenient depending on the application.

Example 1,
There are 60 seconds in a minute.
There are 60 minutes in an hour.
Example 2.
There are 2 pints in a quart
There are 2 cups in a pint
There are 16 tablespoons in a cup.
Example 3 ,
We will subdivide by 3's to obtain a nice repusentation of the cantor set.

Thus $x=.0 \square ?$ base 3 .

Thus $x=.02 \square ?$ base 3

Thus $x=.0201$? base 3

In general if $x \in[0,1]$ we may use this subdividing process to obtain am sones $a_{n} \in\{0,1,2\}$ sunn that

$$
x=\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}
$$

an if $a_{n} \in\{0,1,2\}$ is any sequence then

$$
x=\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}
$$

Sums to some number $x \in[0,1]$. Ne shall show that
$P=\left\{x \in[0,1]\right.$: there exists $a_{n} \in\{0,2\}$ with $\left.x=\sum_{n=1}^{n} a_{n} \frac{1}{3 m}\right\}$. and mozever if $x \in P$ then there is only one sequence $a_{n} \in\{0,2\}$ sack that $x=\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}$.

Observe that some numbers may be written using 2 different base 3 expansions in an analogous way that some numbers have 2 different decimal nepresutations.

In particular,

$$
\mathrm{V}_{\text {bax }} 02 \overline{\sum_{n}}=\sum_{n=2}^{\infty} \frac{2}{3^{n}}=2 \frac{\frac{1}{9}}{1-\frac{1}{3}}=2 \frac{\left(\frac{1}{9}\right)}{\left(\frac{2}{3}\right)}=\frac{1}{3}
$$

and

$$
1_{\text {base }}=\frac{1}{3}
$$

Also

$$
-12 \overline{2}=\frac{1}{3}+\sum_{n=2}^{\infty} \frac{2}{3^{n}}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
$$

and

$$
\cdot 2_{\text {base } 3}=\frac{2}{3}
$$

Note also that if a number has two different base 3 expansions then at least one of the representations has a 1 in it if not both.

This observation that if $a_{n}, b_{n} \in\{0,1,2\}$ are two different sequences and

$$
\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}=\sum_{n=1}^{\infty} b_{n} \frac{1}{3^{n}}
$$

then one of the sequences must contain the digit 1 in it implies the uniqueness of the representation of any number in the set

$$
\left\{x \in[0,1] \text { : the exists } a_{n} \in\{0,2\} \text { with } x=\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}\right\} \text {. }
$$

We now show that this set is, in fact P.
First note

$$
P_{0}=[0,1]=\left\{\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}: a_{n} \in\{0,1,2\}\right\}
$$

Now

$$
P_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]
$$

So

$$
\begin{aligned}
& {\left[0, \frac{1}{3}\right]=\{x: x=.0 ? ? ? ?, \quad \text { base } 3\}} \\
& {\left[\frac{1}{3}, \frac{2}{3}\right]=\{x: x=, 1 ? ? ? 7 \text { base } 3\}} \\
& {\left[\frac{2}{3}, 1\right]=\{x: x=12 ? ? ? ? \ldots}
\end{aligned}
$$

Recall again that the above, three sets overlap at their boundaries because the non uniqueness of base 3 remesmtations.

Therefore

$$
P_{1}=\left\{\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}: a_{1} \in\{0,2\} \text { and } a_{k} \in\{0,1,2\} \text { for } k>1\right\}
$$

similarly

$$
P_{2}=\left\{\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}: a_{1}, a_{2} \in\{0,2\} \text { and } a_{k} \in\{0,1,2\} \text { hor } k>1\right\}
$$

Clearly, them,

$$
\begin{aligned}
P & =\bigcap_{n=1}^{\infty} P_{n}=\left\{\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}: a_{k} \in\{0,2\} \text { for all } k\right\} \\
& =\left\{x \in[0,1] \text { : there exists } a_{n} \in\{0,2\} \text { with } x=\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}\right\}
\end{aligned}
$$

Note the word "clearly" on the previous page means as it docs in most mathematical writing that some details have been left out of the angument which the author does not feel like waiting down, but which are deut should be possible to figure out by whoever is reading this.

Sometimes it takes a page or an entire book of then to supply the missing details. When reading a passage that contains the words
"clearly". "obviously". "(why?)"
"it may easily be shown", etc...
These word should be taker as a warning indicating to the reader that details have been left out which ne to be supped in order to complete the argament.
In particular, this is a request to the reader to take up a pencil and write the missing details down on their ran papen.

Any ray...

Except for the word "clearly" we Now hove a representation of the cantor set as.

$$
P=\left\{x \in[0,1]: \text { therevists } a_{n} \in\{0,2\} \text { with } x=\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}}\right\}
$$

Using this representation we define

$$
f: P \rightarrow[0,1]
$$

by

$$
\sum_{n=1}^{\infty} a_{n} \frac{1}{3^{n}} \rightarrow \sum_{n=1}^{\infty} \frac{a_{n} / 2}{2^{n}}
$$

This function is wall defined, since the reriesentation $\sum_{n=1}^{\infty} a_{n} \frac{1}{8^{n}}$ is unique
and also because $a_{n} \in\{0,2\}$ then $a_{n / 2} \in\{0,1\}$ so as a result $\sum_{n=1}^{\infty} \frac{a_{n} / 2}{2^{n}}$ is a base 2 expansion of some number in $[0,1]$. So $f(p) \subseteq[0,1]$.

Claim $\quad f: p \rightarrow[0,1]$ is onto.
Since any $y \in[0,1]$ has abase 2 mpresentation of the from

$$
y=\sum_{n=1}^{\infty} \frac{b_{n}}{2^{n}} \text { where } b_{n} \in\{0,1\}
$$

then setting $a_{n}=2 b_{n}$ we obtain

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} \in P
$$

such that $f(x)=y$. Note that this claim and the fact that $p \subseteq[0,1]$ shows that $p \sim[0,1]$. To see this use the Schroeder-Bernsticin theorem or the varient of the schroeder-Bernsteili theorem from the homework.

It's time for a break...
While on break please think about the question:
Question; Is $f: P \rightarrow[0,1]$
one-to-one?

Vote:

One to one	not one-to-one
10	2

I do hope the results of yesterdays election were better that this vote, because f is not 1 -t ow.

For example

$$
\begin{aligned}
f\left(0.2 \text { base } 3^{f}\right. & =0.1_{\text {base } 2}=\frac{1}{2} \\
f\left(0.0 \overline{2}_{\text {base } 3}\right) & =0.011_{\text {base }} \\
& =\sum_{n=2}^{\infty} \frac{1}{2^{n}}=\frac{\frac{1}{4}}{1-\frac{1}{2}}=\frac{1}{2}
\end{aligned}
$$

We are now ready to define the Cantor singalar Sumption:

Since $[0,1] \backslash p$ is open then $[0,1] \backslash p=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$ by the structure theorem of the oren sets on R,
Define

$$
\psi(x)= \begin{cases}f(x) & \text { if } x \in p \\ f\left(a_{n}\right) & \text { if } x \in\left(a_{n}, b_{n}\right) \text { for some } n \in \mathbb{N}\end{cases}
$$

There is a graph of $\psi(x)$ in the book. It is missing some details because of all the "r which appear. Jat's. try to draw as more accurate graph based on the definition and base 3 expansions.

The idea. Given x convert it to base 3. If the expansion has only the digits 0 or 2 great, otherwise we round it down the greatest element $a_{n} \in P$ such that $a_{n}<x$. Since P is closed such an element exists. The rounding process looks like this

$$
.0202212102 \underset{\text { base } 3}{x} \rightarrow 020220 \overline{a_{n}}
$$

first 1 in the bare 3 expansion

Therefore $\psi(x)=f\left(a_{n}\right)$ implies

$$
\begin{aligned}
& \psi\left(.0202212102_{\text {base 3 }}\right) \\
& =f\left(.020220 \overline{2}_{\text {base 3 }}\right) \\
& =.010110 T_{\text {base } 2} \\
& =.010111 \text { base } 2
\end{aligned}
$$

So to simplify we map
the preceding digits where the a's have been changed to l's.
The Maple script developed in class to graph this function is on the website.

