- **1.** Let $E \subseteq \mathbf{R}$. The closure of E is
 - (A) $\overline{E} = \{ x \in \mathbf{R} : \text{for every } y \in E \text{ there exists } \epsilon > 0 \text{ such that } 0 < |y x| < \epsilon \}$
 - (B) $\overline{E} = \{ x \in \mathbf{R} : \text{for every } \epsilon > 0 \text{ there exists } y \in E \text{ such that } 0 < |y x| < \epsilon \}$
 - (C) $\overline{E} = \{ x \in \mathbf{R} : \text{for every } y \in E \text{ there exists } \epsilon > 0 \text{ such that } |y x| < \epsilon \}$
 - (D) $\overline{E} = \{ x \in \mathbf{R} : \text{for every } \epsilon > 0 \text{ there exists } y \in E \text{ such that } |y x| < \epsilon \}$
 - (E) none of these
- **2.** Given an interval I let $\ell(I)$ be its length. For each subset $A \subseteq \mathbf{R}$, the Lebesgue outer measure of A, denoted by $\lambda^*(A)$, is defined by
 - (A) $\lambda^*(A) = \inf \left\{ \sum_n \ell(I_n) : I_n \text{ are open intervals where } A \subseteq \bigcap_n I_n \right\}$
 - (B) $\lambda^*(A) = \inf \left\{ \sum_n \ell(I_n) : I_n \text{ are open intervals where } A \subseteq \bigcup_n I_n \right\}$
 - (C) $\lambda^*(A) = \sup\left\{\sum_n \ell(I_n) : I_n \text{ are open intervals where } A \supseteq \bigcap_n I_n\right\}$ (D) $\lambda^*(A) = \sup\left\{\sum_n \ell(I_n) : I_n \text{ are open intervals where } A \supseteq I_n I_n\right\}$
 - (D) $\lambda^*(A) = \sup \left\{ \sum_n \ell(I_n) : I_n \text{ are open intervals where } A \supseteq \bigcup_n I_n \right\}$
 - (E) none of these
- **3.** Let \hat{C} be the collection of Borel measurable functions, \mathcal{B} the set of Borel measurable sets and τ the collection of open sets in **R**. Then
 - (A) $\hat{C} = \left\{ f: \mathbf{R} \to \mathbf{R} \text{ such that } f^{-1}(B) \in \mathcal{B} \text{ for every } B \in \mathcal{B} \right\}$
 - (B) $\hat{C} = \{ f: \mathbf{R} \to \mathbf{R} \text{ such that } f^{-1}(O) \in \mathcal{B} \text{ for every } O \in \tau \}$
 - (C) $\hat{C} = \left\{ f: \mathbf{R} \to \mathbf{R} \text{ such that } f^{-1}(a) \in \mathcal{B} \text{ for every } a \in \mathbf{R} \right\}$
 - (D) both (A) and (B)
 - (E) both (A), (B) and (C) (
- 4. Let \mathcal{A} be the smallest σ -algebra that contains the open sets, \hat{C} the collection of Borel measurable functions and λ^* the Lebesgue outer measure. Then

(A)
$$\mathcal{A} = \{ B \subseteq \mathbf{R} : \chi_B \in \hat{C} \}$$

- (B) $\mathcal{A} = \{ E \subseteq \mathbf{R} : \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c) \text{ for every } W \subseteq \mathbf{R} \}$
- (C) $\mathcal{A} = \{ W \subseteq \mathbf{R} : \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c) \text{ for every } E \subseteq \mathbf{R} \}$
- (D) both (A) and (B)
- (E) both (A), (B) and (C) (

5. Let P be the Cantor set. Then

(A)
$$P = \bigcap_{n=1}^{\infty} P_n$$
 where $P_n = \left\{ \sum_{k=1}^{n} \frac{a_k}{3^k} : a_k \in \{0, 1, 2\} \right\}$
(B) $P = \bigcap_{n=1}^{\infty} P_n$ where $P_n = \left\{ \sum_{k=1}^{n} \frac{a_k}{3^k} : a_k \in \{0, 2\} \right\}$
(C) $P = \left\{ \sum_{k=1}^{\infty} \frac{a_k}{3^k} : a_k \in \{0, 2\} \right\}$
(D) $P = \left\{ \sum_{k=1}^{\infty} \frac{a_k}{2^k} : a_k \in \{0, 1\} \right\}$
(E) none of these

- 6. In the following true false questions \hat{C} is the set of Borel measurable functions, \mathcal{B} is the collection of Borel measurable sets, λ^* is the Lebesgue outer measure and \mathcal{M} is the set of Lebesgue measurable sets.
 - (i) Let $A, B \in \mathcal{B}$ such that $A \subseteq B$ and $A \neq B$. Then $\lambda^*(A) < \lambda^*(B)$.
 - (A) true
 - (B) false
 - (ii) If $f: \mathbf{R} \to \mathbf{R}$ is a continuous function then $f \in \hat{C}$.
 - (A) true
 - (B) false
 - (iii) Suppose

$$x = \sum_{k=1}^{\infty} \frac{d_k}{10^k}$$
 and $y = \sum_{k=1}^{\infty} \frac{e_k}{10^k}$ where $d_k, e_k \in \{0, 1, 2, \dots, 9\}.$

If x < y then $d_1 \leq e_1$.

- (A) true
- (B) false

(iv) If $\lambda^*(E) = 0$ and $E \in \mathcal{M}$ then E must be countable.

- (A) true
- (B) false

7. Give an example of a set which is not Lebesgue measurable.

8. Let $A, B \subseteq \mathbf{R}$. Prove or find a counter example to the claim that $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

9. [Extra Credit] We have studied the mathematics of Borel, Cantor, Lebesgue and Riemann. Order these mathematicians according to when they were born.

- 10. Let $d(A, B) = \inf\{ |a b| : a \in A \text{ and } b \in B \}$ and \mathcal{M} be the collection of Lebesgue measurable sets. Prove one of the following:
 - (i) $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$ for $A, B \subseteq \mathbf{R}$ with d(A, B) > 0.
 - (ii) $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$ for $A, B \in \mathcal{M}$ with $A \cap B = \emptyset$.

- **11.** Prove one of the following:
 - (i) Let f be monotone function which maps \mathbf{R} onto \mathbf{R} . Then f is continuous.
 - (ii) Let f_n be a sequence of continuous functions which map **R** into **R**. Suppose $f_n \to f$ uniformly. Then f is continuous.

- 12. Let $d(A, B) = \inf\{ |a b| : a \in A \text{ and } b \in B \}$ and \mathcal{M} be the collection of Lebesgue measurable sets. Prove or find a counter example to one of the following claims:
 - (i) Let \mathcal{C} be a finite collection of non-empty subsets of \mathbf{R} . Given $A, B \in \mathcal{C}$ suppose $A \simeq B$ means that d(A, B) = 0. Prove or find a counter example to the claim that \simeq is an equivalence relation on \mathcal{C} .
 - (ii) Suppose $A, B \in \mathcal{M}$ are such that $A \subseteq B$ and $\lambda^*(A) < \infty$. Prove or find a counter example to the claim that $\lambda^*(B \setminus A) = \lambda^*(B) \lambda^*(A)$.