
Math 713 Practice Quiz 1 Version A

1. Let In = [−n, 1/n] for n ∈ N and U =
⋃

∞

n=1 In. Then

(A) U = (−∞, 0)

(B) U = (−∞, 0]

(C) U = (−∞, 1)

(D) U = (−∞, 1]

(E) none of these

2. Let Jn = [0, 1/n] for n ∈ N and V =
⋂

∞

n=1 Jn. Then

(A) V = ∅

(B) V = { 0 }

(C) V = [0, 1)

(D) V = [0, 1]

(E) none of these

3. Let f :X → Y . If A ⊆ X then

(A) f(A) = { f(x) : x ∈ X }

(B) f(A) = {x ∈ X : f(x) ∈ Y }

(C) f(A) = {x ∈ X : f(x) ∈ A }

(D) f(A) = {x ∈ X : f(x) ∈ Y \ A }

(E) none of these

4. Let Ω be a set and A be a collection of subsets of Ω such that A ∈ A implies Ac ∈ A
and A,B ∈ A implies A ∪ B ∈ A. Then A must be

(A) an algebra

(B) a σ-algebra

(C) a monotone class

(D) both (A) and (B)

(E) both (A), (B) and (C)

5. [Extra Credit] State the first and last names of three world famous mathematicians
either dead or alive who do not work at UNR. Correct spelling is essential.
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6. A set U ∈ R is open if for every x ∈ U there exists r > 0 such that (x−r, x+r) ⊆ U .
This is equivalent to saying U is open if

(A) for every sequence xn ∈ U and x ∈ R then xn → x implies x ∈ U

(B) for every sequence xn ∈ U c and x ∈ R then xn → x implies x ∈ U c

(C) for every x ∈ U c there exists r > 0 such that U c ⊆ [x − r, x + r]

(D) every sequence xn ∈ U has a convergent subsequence

(E) none of these

7. Let D ⊆ R and f :D → R. Suppose for every ǫ > 0 there is δ > 0 such that a, b ∈ D
and |a − b| < δ implies |f(a) − f(b)| < ǫ. Then f must be

(A) continuous

(B) uniformly continuous

(C) differentiable

(D) both (A) and (B)

(E) both (A), (B) and (C)

8. Let xn be a sequence of real numbers. A real number x is said to be a cluster point
of xn if for each ǫ > 0 and N ∈ N there is an n ≥ N such that |x− xn| < ǫ. This is
equivalent to saying x ∈ R is a cluster point of xn if

(A) x ∈ E where E = {xn : n ∈ N }

(B) there exists a subsequence xnk
such that xnk

→ x

(C) there exists a subsequence xnk
of distinct elements such that xnk

→ x

(D) x ∈ [α, β] where α = lim inf xn and β = lim supxn

(E) none of these

9. Let D ⊆ R and fn:D → R for n ∈ N. Suppose for each x ∈ D and ǫ > 0 there is
N ∈ N such that n,m ≥ N implies |fn(x) − fm(x)| < ǫ. Then the sequence fn of
real valued functions must be

(A) pointwise convergent

(B) uniformly convergent

(C) differentiable

(D) both (A) and (B)

(E) both (A), (B) and (C)
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10. Fill in the missing blanks in the statement of the following axiom.

Completeness Axiom. A subset of real numbers

that is bounded above has a .

11. Fill in the missing blanks in the statement of the following theorem.

Theorem 2.7. A function on [a, b] is Rie-

mann integrable if and only if the set of points of discontinuity of the function has

measure .

12. Show there is an irrational number between any two rational numbers.
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13. Let U ⊆ R be a non-empty bounded open set and x ∈ U . Define

a = inf{ y : y < x and (y, x) ⊆ U }.

Show that a /∈ U .
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14. Prove one of the following theorems.

(i) Let D ⊆ R and fn:D → R be a sequence of continuous functions. Suppose
fn → f uniformly. Then f is continuous.

(ii) Suppose f : [0, 1] → R is continuous and f(c) > 0 for some c ∈ (0, 1). Show
there is h > 0 such that |x − c| < h implies f(x) > 0.
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15. Prove or find a counter example to one of the following claims.

(i) Let xn ∈ R for n ∈ N and h:N → N be a bijection. Define yn = xh(n). Let
E = {x ∈ R : x is a cluster point of xn } and F = { y ∈ R : y is a cluster
point of yn }. Prove or find a counter example to the claim that E = F .

(ii) For A,B ⊆ R define A ·B = { ab : a ∈ A and b ∈ B }. Prove or find a counter
example to the claim that A · B = A · B.


