- **1.** Let $I_n = [-n, 1/n]$ for $n \in \mathbb{N}$ and $U = \bigcup_{n=1}^{\infty} I_n$. Then
 - (A) $U = (-\infty, 0)$ (B) $U = (-\infty, 0]$
 - (C) $U = (-\infty, 1)$
 - (D) $U = (-\infty, 1]$
 - (E) none of these
- **2.** Let $J_n = [0, 1/n]$ for $n \in \mathbb{N}$ and $V = \bigcap_{n=1}^{\infty} J_n$. Then
 - (A) $V = \emptyset$
 - (B) $V = \{0\}$
 - (C) V = [0, 1)
 - (D) V = [0, 1]
 - (E) none of these
- **3.** Let $f: X \to Y$. If $A \subseteq X$ then
 - $(\mathbf{A}) \quad f(A) = \{ f(x) : x \in X \}$
 - (B) $f(A) = \{ x \in X : f(x) \in Y \}$
 - (C) $f(A) = \{ x \in X : f(x) \in A \}$
 - (D) $f(A) = \{ x \in X : f(x) \in Y \setminus A \}$
 - (E) none of these
- **4.** Let Ω be a set and \mathcal{A} be a collection of subsets of Ω such that $A \in \mathcal{A}$ implies $A^c \in \mathcal{A}$ and $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$. Then \mathcal{A} must be
 - (A) an algebra
 - (B) a σ -algebra
 - (C) a monotone class
 - (D) both (A) and (B)
 - (E) both (A), (B) and (C) (
- 5. [Extra Credit] State the first and last names of three world famous mathematicians either dead or alive who do not work at UNR. Correct spelling is essential.

Math 713 Practice Quiz 1 Version A

- **6.** A set $U \in \mathbf{R}$ is open if for every $x \in U$ there exists r > 0 such that $(x-r, x+r) \subseteq U$. This is equivalent to saying U is open if
 - (A) for every sequence $x_n \in U$ and $x \in \mathbf{R}$ then $x_n \to x$ implies $x \in U$
 - (B) for every sequence $x_n \in U^c$ and $x \in \mathbf{R}$ then $x_n \to x$ implies $x \in U^c$
 - (C) for every $x \in U^c$ there exists r > 0 such that $U^c \subseteq [x r, x + r]$
 - (D) every sequence $x_n \in U$ has a convergent subsequence
 - (E) none of these
- **7.** Let $D \subseteq \mathbf{R}$ and $f: D \to \mathbf{R}$. Suppose for every $\epsilon > 0$ there is $\delta > 0$ such that $a, b \in D$ and $|a b| < \delta$ implies $|f(a) f(b)| < \epsilon$. Then f must be
 - (A) continuous
 - (B) uniformly continuous
 - (C) differentiable
 - (D) both (A) and (B) (
 - (E) both (A), (B) and (C)
- 8. Let x_n be a sequence of real numbers. A real number x is said to be a cluster point of x_n if for each $\epsilon > 0$ and $N \in \mathbb{N}$ there is an $n \ge N$ such that $|x x_n| < \epsilon$. This is equivalent to saying $x \in \mathbb{R}$ is a cluster point of x_n if
 - (A) $x \in \overline{E}$ where $E = \{ x_n : n \in \mathbf{N} \}$
 - (B) there exists a subsequence x_{n_k} such that $x_{n_k} \to x$
 - (C) there exists a subsequence x_{n_k} of distinct elements such that $x_{n_k} \to x$
 - (D) $x \in [\alpha, \beta]$ where $\alpha = \liminf x_n$ and $\beta = \limsup x_n$
 - (E) none of these
- **9.** Let $D \subseteq \mathbf{R}$ and $f_n: D \to \mathbf{R}$ for $n \in \mathbf{N}$. Suppose for each $x \in D$ and $\epsilon > 0$ there is $N \in \mathbf{N}$ such that $n, m \geq N$ implies $|f_n(x) f_m(x)| < \epsilon$. Then the sequence f_n of real valued functions must be
 - (A) pointwise convergent
 - (B) uniformly convergent
 - (C) differentiable
 - (D) both (A) and (B) (A)
 - (E) both (A), (B) and (C) (

10. Fill in the missing blanks in the statement of the following axiom.

Completeness Axiom. A	subset of	f real numbers
that is bounded above has a		

11. Fill in the missing blanks in the statement of the following theorem.

Theorem 2.7. A		function on $[a, b]$ is Rie-
-----------------------	--	------------------------------

mann integrable if and only if the set of points of discontinuity of the function has

measure		•
---------	--	---

12. Show there is an irrational number between any two rational numbers.

13. Let $U \subseteq \mathbf{R}$ be a non-empty bounded open set and $x \in U$. Define

$$a = \inf\{ y : y < x \text{ and } (y, x) \subseteq U \}.$$

Show that $a \notin U$.

- 14. Prove one of the following theorems.
 - (i) Let $D \subseteq \mathbf{R}$ and $f_n: D \to \mathbf{R}$ be a sequence of continuous functions. Suppose $f_n \to f$ uniformly. Then f is continuous.
 - (ii) Suppose $f:[0,1] \to \mathbf{R}$ is continuous and f(c) > 0 for some $c \in (0,1)$. Show there is h > 0 such that |x c| < h implies f(x) > 0.

- 15. Prove or find a counter example to one of the following claims.
 - (i) Let $x_n \in \mathbf{R}$ for $n \in \mathbf{N}$ and $h: \mathbf{N} \to \mathbf{N}$ be a bijection. Define $y_n = x_{h(n)}$. Let $E = \{x \in \mathbf{R} : x \text{ is a cluster point of } x_n\}$ and $F = \{y \in \mathbf{R} : y \text{ is a cluster point of } y_n\}$. Prove or find a counter example to the claim that E = F.
 - (ii) For $A, B \subseteq \mathbf{R}$ define $A \cdot B = \{ab : a \in A \text{ and } b \in B\}$. Prove or find a counter example to the claim that $\overline{A} \cdot \overline{B} = \overline{A \cdot B}$.