Math 713 Practice Quiz 1 Version A

1. Let $I_{n}=[-n, 1 / n]$ for $n \in \mathbf{N}$ and $U=\bigcup_{n=1}^{\infty} I_{n}$. Then
(A) $U=(-\infty, 0)$
(B) $U=(-\infty, 0]$
(C) $U=(-\infty, 1)$
(D) $U=(-\infty, 1]$
(E) none of these
2. Let $J_{n}=[0,1 / n]$ for $n \in \mathbf{N}$ and $V=\bigcap_{n=1}^{\infty} J_{n}$. Then
(A) $V=\emptyset$
(B) $V=\{0\}$
(C) $\quad V=[0,1)$
(D) $V=[0,1]$
(E) none of these
3. Let $f: X \rightarrow Y$. If $A \subseteq X$ then
(A) $f(A)=\{f(x): x \in X\}$
(B) $f(A)=\{x \in X: f(x) \in Y\}$
(C) $f(A)=\{x \in X: f(x) \in A\}$
(D) $f(A)=\{x \in X: f(x) \in Y \backslash A\}$
(E) none of these
4. Let Ω be a set and \mathcal{A} be a collection of subsets of Ω such that $A \in \mathcal{A}$ implies $A^{c} \in \mathcal{A}$ and $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$. Then \mathcal{A} must be
(A) an algebra
(B) a σ-algebra
(C) a monotone class
(D) both (A) and (B)
(E) both (A), (B) and (C)
5. [Extra Credit] State the first and last names of three world famous mathematicians either dead or alive who do not work at UNR. Correct spelling is essential.

Math 713 Practice Quiz 1 Version A

6. A set $U \in \mathbf{R}$ is open if for every $x \in U$ there exists $r>0$ such that $(x-r, x+r) \subseteq U$. This is equivalent to saying U is open if
(A) for every sequence $x_{n} \in U$ and $x \in \mathbf{R}$ then $x_{n} \rightarrow x$ implies $x \in U$
(B) for every sequence $x_{n} \in U^{c}$ and $x \in \mathbf{R}$ then $x_{n} \rightarrow x$ implies $x \in U^{c}$
(C) for every $x \in U^{c}$ there exists $r>0$ such that $U^{c} \subseteq[x-r, x+r]$
(D) every sequence $x_{n} \in U$ has a convergent subsequence
(E) none of these
7. Let $D \subseteq \mathbf{R}$ and $f: D \rightarrow \mathbf{R}$. Suppose for every $\epsilon>0$ there is $\delta>0$ such that $a, b \in D$ and $|a-b|<\delta$ implies $|f(a)-f(b)|<\epsilon$. Then f must be
(A) continuous
(B) uniformly continuous
(C) differentiable
(D) both (A) and (B)
(E) both (A), (B) and (C)
8. Let x_{n} be a sequence of real numbers. A real number x is said to be a cluster point of x_{n} if for each $\epsilon>0$ and $N \in \mathbf{N}$ there is an $n \geq N$ such that $\left|x-x_{n}\right|<\epsilon$. This is equivalent to saying $x \in \mathbf{R}$ is a cluster point of x_{n} if
(A) $x \in \bar{E}$ where $E=\left\{x_{n}: n \in \mathbf{N}\right\}$
(B) there exists a subsequence $x_{n_{k}}$ such that $x_{n_{k}} \rightarrow x$
(C) there exists a subsequence $x_{n_{k}}$ of distinct elements such that $x_{n_{k}} \rightarrow x$
(D) $x \in[\alpha, \beta]$ where $\alpha=\liminf x_{n}$ and $\beta=\limsup x_{n}$
(E) none of these
9. Let $D \subseteq \mathbf{R}$ and $f_{n}: D \rightarrow \mathbf{R}$ for $n \in \mathbf{N}$. Suppose for each $x \in D$ and $\epsilon>0$ there is $N \in \mathbf{N}$ such that $n, m \geq N$ implies $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$. Then the sequence f_{n} of real valued functions must be
(A) pointwise convergent
(B) uniformly convergent
(C) differentiable
(D) both (A) and (B)
(E) both (A), (B) and (C)

Math 713 Practice Quiz 1 Version A

10. Fill in the missing blanks in the statement of the following axiom.

that is bounded above has a \square
11. Fill in the missing blanks in the statement of the following theorem.

Theorem 2.7. A
 function on $[a, b]$ is Riemann integrable if and only if the set of points of discontinuity of the function has measure \square
12. Show there is an irrational number between any two rational numbers.

Math 713 Practice Quiz 1 Version A
13. Let $U \subseteq \mathbf{R}$ be a non-empty bounded open set and $x \in U$. Define

$$
a=\inf \{y: y<x \text { and }(y, x) \subseteq U\}
$$

Show that $a \notin U$.

Math 713 Practice Quiz 1 Version A

14. Prove one of the following theorems.
(i) Let $D \subseteq \mathbf{R}$ and $f_{n}: D \rightarrow \mathbf{R}$ be a sequence of continuous functions. Suppose $f_{n} \rightarrow f$ uniformly. Then f is continuous.
(ii) Suppose $f:[0,1] \rightarrow \mathbf{R}$ is continuous and $f(c)>0$ for some $c \in(0,1)$. Show there is $h>0$ such that $|x-c|<h$ implies $f(x)>0$.

Math 713 Practice Quiz 1 Version A

15. Prove or find a counter example to one of the following claims.
(i) Let $x_{n} \in \mathbf{R}$ for $n \in \mathbf{N}$ and $h: \mathbf{N} \rightarrow \mathbf{N}$ be a bijection. Define $y_{n}=x_{h(n)}$. Let $E=\left\{x \in \mathbf{R}: x\right.$ is a cluster point of $\left.x_{n}\right\}$ and $F=\{y \in \mathbf{R}: y$ is a cluster point of $\left.y_{n}\right\}$. Prove or find a counter example to the claim that $E=F$.
(ii) For $A, B \subseteq \mathbf{R}$ define $A \cdot B=\{a b: a \in A$ and $b \in B\}$. Prove or find a counter example to the claim that $\bar{A} \cdot \bar{B}=\overline{A \cdot B}$.
