Annalee Gomm

3.69. Let f be a nonnegative Lebesgue measurable function. Show that

$$
\lim _{n \rightarrow \infty} \int_{[-n, n]} f d \lambda=\int_{\mathcal{R}} f d \lambda
$$

Consider the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of real-valued functions on \mathcal{R}, where $f_{n}=\chi_{[-n, n]} f$. Note that $[-n, n] \in \mathcal{M}$ since it is an interval; consequently $\chi_{[-n, n]}$ is a Lebesgue measurable function. Hence each f_{n} is Lebesgue measurable, being the product of two Lebesgue measurable functions. For each $x \in \mathcal{R}$ we have $f_{n}(x)=f(x)$ whenever $n \geq|x|$, so $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$. We also have

$$
f_{n}(x)= \begin{cases}f(x) \geq 0 & \text { if }|x| \leq n \\ 0 & \text { if }|x|>n\end{cases}
$$

and so

$$
0 \leq f_{1}(x) \leq f_{2}(x) \leq \cdots \leq f_{n}(x) \leq \cdots
$$

for each $x \in \mathcal{R}$. Therefore $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a monotone decreasing sequence of nonnegative functions that converges pointwise to f, and we can apply the Monotone Convergence Theorem. We have

$$
\lim _{n \rightarrow \infty} \int_{[-n, n]} f d \lambda=\lim _{n \rightarrow \infty} \int_{\mathcal{R}} f_{n} d \lambda=\int_{\mathcal{R}} f d \lambda
$$

which is what we wanted to show.
3.88. Let $E \in \mathcal{M}$ with $\lambda(E)<\infty$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ a sequence of Lebesgue measurable functions that converges pointwise on E to a real-valued function. Further suppose that there is an $M \in \mathcal{R}$ such that $\left|f_{n}(x)\right| \leq M$ for $n \in \mathcal{N}, x \in E$. Show that

$$
\int_{E} \lim _{n \rightarrow \infty} f_{n} d \lambda=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \lambda
$$

Let $g: E \rightarrow \mathcal{R}$ be given by $g(x)=M$ for all $x \in E$. Then g is Lebesgue measurable since it is a constant function. We have

$$
\int_{E}|g| d \lambda=\int_{E} M d \lambda=M \int_{E} d \lambda=M \cdot \lambda(E)<\infty
$$

which means that g is Lebesgue integrable. We also have $\left|f_{n}\right| \leq g$ for all $n \in \mathcal{N}$. Thus the Dominated Convergence Theorem implies that

$$
\int_{E} \lim _{n \rightarrow \infty} f_{n} d \lambda=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \lambda
$$

as desired.
3.101. For Lebesgue measurable functions, f and g, define $f \sim g$ if and only if $f=g \lambda$-ae. Prove that \sim is an equivalence relation.

We must show that \sim is reflexive, symmetric, and transitive. Let f, g, h be Lebesgue measurable functions and note that $f \sim g$ if and only if $\lambda(\{x: f(x) \neq g(x)\})=0$. Now $\{x: f(x) \neq f(x)\}=\varnothing$ and $\lambda(\varnothing)=0$, showing that $f \sim f$, i.e., \sim is reflexive. Next, since

$$
\{x: f(x) \neq g(x)\}=\{x: g(x) \neq f(x)\},
$$

we have

$$
\lambda(\{x: f(x) \neq g(x)\})=\lambda(\{x: g(x) \neq f(x)\})
$$

This means that if $\lambda(\{x: f(x) \neq g(x)\})=0$ then $\lambda(\{x: g(x) \neq f(x)\})=0$, so if $f \sim g$ then $g \sim f$. Thus \sim is symmetric. Finally, we must show that \sim is transitive. Suppose that $f \sim g$ and $g \sim h$. Put

$$
A=\{x: f(x) \neq g(x)\}, \quad B=\{x: g(x) \neq h(x)\}, \quad C=\{x: f(x) \neq h(x)\} ;
$$

then by assumption $\lambda(A)=0$ and $\lambda(B)=0$. We claim that $C \subseteq A \cup B$. To see this, suppose $x \in C$, so that $f(x) \neq h(x)$. If $x \notin A$ then we have $f(x)=g(x)$; hence $g(x) \neq h(x)$, so $x \in B$. Thus $x \in A \cup B$, proving the claim. We now have

$$
\lambda(C) \leq \lambda(A \cup B) \leq \lambda(A)+\lambda(B)=0+0=0 .
$$

But $\lambda(C)=0$ means that $f \sim h$, so \sim is transitive. The proof is therefore complete.
3.108. Let f and g be \mathcal{M}-measurable functions with $\int|f-g| d \lambda=0$. Prove that $f=g \lambda$-ae.

Suppose to the contrary that we do not have equality almost everywhere. Let

$$
E=\{x: f(x) \neq g(x)\}=\{x:|f(x) \neq g(x)|>0\}
$$

$$
\begin{gathered}
E_{1}=\{x:|f(x)-g(x)| \geq 1\} \\
E_{n}=\left\{x: \frac{1}{n} \leq|f(x)-g(x)|<\frac{1}{n-1}\right\}, n>0
\end{gathered}
$$

Then the sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ are disjoint and $E=\bigcup_{n=1}^{\infty} E_{n}$. Our assumption implies that $\lambda(E)>0$. By the additivity of the measure, we have

$$
\sum_{n=1}^{\infty} \lambda\left(E_{n}\right)=\lambda(E)>0
$$

It follows that there is some $N \in \mathcal{N}$ such that $\lambda\left(E_{N}\right)>0$. For $x \in E_{N}, \frac{1}{N} \leq|f(x)-g(x)|$. We have

$$
\begin{aligned}
0<\frac{1}{N} \lambda\left(E_{N}\right) & =\frac{1}{N} \int_{E_{N}} d \lambda \\
& =\int_{E_{N}} \frac{1}{N} d \lambda \\
& \leq \int_{E_{N}}|f(x)-g(x)| d \lambda \\
& \leq \int_{\mathcal{R}}|f-g| d \lambda
\end{aligned}
$$

But this is a contradiction, since $\int|f-g| d \lambda=0$. We conclude that $f=g \lambda$-ae.
3.109. Show that, if f is Lebesgue integrable and $\int_{E} f d \lambda=0$ for each $E \in \mathcal{M}$, then $f=0$ λ-ae.

Let $A=f^{-1}((0, \infty))=\{x: f(x)>0\}$ and $B=f^{-1}((-\infty, 0))=\{x: f(x)<0\}$. Since f is Lebesgue integrable it is Lebesgue measurable, and so A and B, being inverse images of open sets, are members of \mathcal{M}. By assumption we have $\int_{A} f d \lambda=0$ and $\int_{B} f d \lambda=0$. Note that

$$
f^{+}(x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \in A, \\
0 & \text { if } x \notin A
\end{array}=\chi_{A} f(x)\right.
$$

and

$$
f^{-}(x)=\left\{\begin{array}{ll}
-f(x) & \text { if } x \in B \\
0 & \text { if } x \notin B
\end{array}=-\chi_{B} f(x)\right.
$$

Therefore,

$$
\int_{\mathcal{R}} f^{+} d \lambda=\int_{\mathcal{R}} \chi_{A} f d \lambda=\int_{A} f d \lambda=0
$$

and

$$
\int_{\mathcal{R}} f^{-} d \lambda=\int_{\mathcal{R}} \chi_{B} f d \lambda=-\int_{B} f d \lambda=0
$$

Observe that

$$
\int_{\mathcal{R}}|f| d \lambda=\int_{\mathcal{R}} f^{+} d \lambda+\int_{\mathcal{R}} f^{-} d \lambda=0+0=0
$$

Let $g: \mathcal{R} \rightarrow \mathcal{R}$ be given by $g(x)=0$ for all $x \in \mathcal{R}$. Then g is \mathcal{M}-measurable (since it is a constant function), and $\int_{\mathcal{R}}|f-g| d \lambda=\int_{\mathcal{R}}|f| d \lambda=0$. The result of the previous exercise implies that $f=g \lambda$-ae. That is, $f=0 \lambda$-ae, completing the proof.

