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3.32. Verify that if A ∈M, λ(A) = 0, and B ⊂ A, then B ∈M and λ(B) = 0.

Suppose that A ∈ M with λ(A) = 0, and let B be any subset of A. By the nonnegativity
and monotonicity of Lebesgue outer measure, we have

0 ≤ λ∗(B) ≤ λ∗(A) = 0,

and so λ∗(B) = 0. Using Proposition 3.4 from our text, we conclude that B ∈M. Moreover,
we have

λ(B) = λ∗(B) = 0,

as claimed. �

. . . . . . . . .

3.44. A set is called a Gδ-set if it is the intersection of a countable number of open sets; and
a set is called an Fσ-set if it is the union of a countable number of closed sets. Note that
Gδ-sets and Fσ-sets are Borel sets. Now suppose that E ∈M.
(a) Show that there is a Gδ-set, G, and an Fσ-set, F , such that F ⊂ E ⊂ G and λ(E \F ) =
λ(G \ E) = 0.
(b) Referring to part (a), deduce that λ(F ) = λ(E) = λ(G).

We begin by proving the following claim: for each ε > 0, there is an open set, O, with E ⊂ O
and λ(O \ E) < ε. First suppose that λ(E) <∞. We have

λ(E) = λ∗(E) = inf

{
∞∑
n=1

l(In) : {In}∞n=1 open intervals, E ⊂
∞⋃
n=1

In

}
,

and so λ(E)+ε is not a lower bound for {
∑∞

n=1 l(In) : {In}∞n=1 open intervals, E ⊂
⋃∞
n=1 In}.

This means that there is some sequence {Jn}∞n=1 of open intervals such that E ⊂
⋃∞
n=1 Jn

and
∑∞

n=1 l(Jn) < λ(E) + ε. If we put O =
⋃∞
n=1 Jn, then O is open and E ⊂ O. We also

have

λ(O) ≤
∞∑
n=1

λ(Jn) =
∞∑
n=1

l(Jn) < λ(E) + ε,

and so, since λ(E) is finite, λ(O \E) = λ(O)− λ(E) < ε. This proves the claim for E ∈M
with finite measure.

Now let E ∈M be arbitrary, and fix ε > 0. Put En = {x ∈ E : |x| < n} = En ∩ (−n, n) for
each natural number n, so that λ(En) ≤ 2n < ∞ and E =

⋃∞
n=1En. By what we showed
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above, for each n we can find an open set On such that En ⊂ On and λ(On \ En) < ε/2n.
Let O =

⋃∞
n=1On. Then O is open, E ⊂ O, and

λ(O \ E) = λ

(
∞⋃
n=1

On \
∞⋃
n=1

En

)

= λ

(
∞⋃
n=1

(On \ En)

)

≤
∞∑
n=1

λ(On \ En)

<
∞∑
n=1

ε/2n

= ε,

completing the proof of the claim.

For each n ∈ N , let Gn be an open set containing E such that λ(Gn \ E) < 1/n. The
existence of such a set is guaranteed by the claim proved above. Put G = ∩∞n=1Gn. Then G
is a Gδ-set and E ⊂ G. We have

λ(G \ E) ≤ λ(Gn \ E) < 1/n

for all n, so we conclude that λ(G \ E) = 0.

Note that Ec ∈ M, so the claim above allows us to find, for each n ∈ N , an open set On

such that Ec ⊂ On and λ(On \ Ec) < 1/n. Let Fn = Oc
n. Then Fn is closed (since On is

open), and Ec ⊂ On implies that Fn ⊂ E. Since E \ Fn = E ∩ On = On ∩ E = On \ Ec,
we have λ(E \ Fn) = λ(On \ Ec) < 1/n. Now let F =

⋃∞
n=1 Fn, so that F is an Fσ-set with

F ⊂ E. We have
λ(E \ F ) ≤ λ(E \ Fn) < 1/n

for each n, and so λ(E \ F ) = 0.

Finally, observe that since F ⊂ E, we have

λ(E) = λ(F ) + λ(E \ F ) = λ(F ) + 0 = λ(F ).

Similarly, since E ⊂ G, we have

λ(G) = λ(E) + λ(G \ E) = λ(E) + 0 = λ(E).

Hence λ(F ) = λ(E) = λ(G). �

. . . . . . . . .
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4.16. Prove that the measure space, (R,M, λ), is the completion of the measure space,
(R,B, λ|B). Use the following steps:
(a) Verify that B ⊂M by employing Exercise 3.32.
(b) Show that B ⊃M by applying Exercise 3.44.
(c) Prove that λ = λ|B.

Let B ∈ B. That is, suppose we can write B = A ∪ C, where A ∈ B and C is a subset of
some Borel set with Lebesgue measure 0. By Exercise 3.32, C ∈M. Since A ∈ B ⊂M and
C ∈ M, the union B = A ∪ C must be in M as well, M being closed under unions. This
shows that B ⊂M.

Now let E ∈ M. Choose F ∈ B and G ∈ B as in Exercise 3.44 so that F ⊂ E ⊂ G,
λ(E \ F ) = λ(G \ E) = 0, and λ(F ) = λ(E) = λ(G). Note that G \ F = G ∪ F c ∈ B since
B is closed under complements and unions, and that

λ(G \ F ) = λ
(
(G \ E) ∪ (E \ F )

)
= λ(E \ F ) + λ(G \ E) = 0.

This means that E \F is a subset of a Borel set with measure 0. We have E = F ∪ (E \F ),
and so E is the union of a Borel set and a subset of a Borel set with measure 0. This means
that E ∈ B, and consequently we conclude that B ⊃M .

Having proved that M = B, it remains to show that λ = λ|B. To this end, suppose
E ∈ M = B. We can write E = A ∪ C, where A ∈ B and C is a subset of some Borel set
with Lebesgue measure 0 (so λ(C) = 0). We have A ⊂ E, hence λ(A) ≤ λ(E), and

λ(E) = λ(A ∪ C) ≤ λ(A) + λ(C) = λ(A) + 0.

It follows that λ(E) = λ(A). Since λ|B(E) = λ(A) by definition, we have λ(E) = λ|B(E),
completing the proof. �

. . . . . . . . .

4.80. Suppose that f ∈ L1(Ω,A, µ). Show that for each ε > 0, there is a δ > 0 such that
µ(E) < δ implies

∫
E
|f | dµ < ε.

Define a nondecreasing sequence {fn}∞n=1 of nonnegative functions by

fn(x) =

{
|f(x)| if |f(x)| ≤ n;

n otherwise

for each n ∈ N . This sequence converges pointwise to |f |, so by the Monotone Convergence
Theorem,

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

|f | dµ.
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Since
∫

Ω
fn dµ ≤

∫
Ω
|f | dµ < ∞ for all n, this means that we can choose an n large enough

to ensure ∫
Ω

|f | dµ−
∫

Ω

fn dµ =

∫
Ω

(|f | − fn) dµ < ε/2. (1)

Next, note that fn ≤ n, and so
∫
E
fn dµ ≤

∫
E
n dµ = nµ(E) for any E ∈ A. Put δ = ε/2n.

Then µ(E) < δ implies ∫
E

fn dµ ≤ nµ(E) < ε/2. (2)

It follows that if µ(E) < δ, then∫
E

|f | dµ =

∫
E

(|f | − fn) dµ+

∫
E

fn dµ

≤
∫

Ω

(|f | − fn) dµ︸ ︷︷ ︸
< ε/2 by (1)

+

∫
E

fn dµ︸ ︷︷ ︸
< ε/2 by (2)

< ε,

which is what we wanted to show. �

. . . . . . . . .

4.147. Denote by B2 the smallest σ-algebra of subsets of R2 that contains all open sets of
R2. Members of B2 are called two-dimensional Borel sets.
(a) Show that B2 = B × B.
(b) A measure on B2 is called a two-dimensional Borel measure. Suppose that µ and ν are
finite two-dimensional Borel measures such that µ(A × B) = ν(A × B) for all A,B ∈ B.
Prove that µ = ν.

Let us first prove that B2 is contained in B×B. To do this we will use the fact that the set,
T , of open rectangles of the form (a, b) × (c, d) with a, b, c, d ∈ Q, forms a countable basis
for the topology on R2. If U is an open subset of R2, then we can write U as a countable
union of elements of T . But each element of T is of the form (a, b)× (c, d), where (a, b) ∈ B
and (c, d) ∈ B, so clearly elements of T are contained in B × B. Hence U is a countable
union of elements of B ×B, and therefore U ∈ B ×B. This shows that B ×B is a σ-algebra
containing all open sets of R2. Since B2 is the smallest σ-algebra containing the open sets,
it follows that B2 ⊂ B × B.

To show that B × B ⊂ B2, we will show that every measurable rectangle is in B2. Consider
the set Bx = {A×R : A ∈ B} of subsets of R2. Note that

(Ac ×R) = (A×R)c and

(
∞⋃
n=1

An

)
×R =

∞⋃
n=1

(An ×R).
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Therefore, since each A ∈ B can be obtained by taking complements and countable unions of
open subsets of R, each A×R ∈ Bx can be obtained by taking complements and countable
unions of sets of the form (U ×R), where U ⊂ R is open. But each (U ×R) is open in R2,
and therefore is an member of B2, as are complements and countable unions of sets of this
form. It follows that Bx ⊂ B2. Similar reasoning shows that By = {R × B : B ∈ B} ⊂ B2.
Now suppose that A ∈ B and B ∈ B. Then A×B = (A×R) ∩ (R×B) is the intersection
of two members of B2, and so A× B ∈ B2 since B2 is closed under unions. This shows that
B2 is a σ-algebra containing the set

U = {A×B : A ∈ B and B ∈ B}

of measurable rectangles. As B × B is the smallest σ-algebra containing U , it follows that
B×B ⊂ B2. Having also shown the reverse containment, we now conclude that B2 = B×B.

Now suppose that µ and ν are finite two-dimensional Borel measures such that µ(A×B) =
ν(A×B) for all A,B ∈ B. This means that µ|U = ν|U , where

U = {A×B : A ∈ B and B ∈ B}

is the semialgebra of measurable rectangles of R2. The σ-algebra generated by U is B × B,
which by what we showed above is equal to B2. Since µ and ν are finite measures, Corollary
4.7 — one of the corollaries to the uniqueness portion of the Extension Theorem — implies
that µ = ν on the measurable space (R2,B2). �.
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