Annalee Gomm
Math 714: Assignment #2

3.32. Verify that if A€ M, A\(A) =0, and B C A, then B € M and \(B) = 0.

Suppose that A € M with A\(A) = 0, and let B be any subset of A. By the nonnegativity
and monotonicity of Lebesgue outer measure, we have

0 < A (B) < A(A) =0,

and so A*(B) = 0. Using Proposition 3.4 from our text, we conclude that B € M. Moreover,
we have

as claimed. W

3.44. A set is called a Ggs-set if it is the intersection of a countable number of open sets; and
a set is called an F,-set if it is the union of a countable number of closed sets. Note that
Gs-sets and F,-sets are Borel sets. Now suppose that E € M.

(a) Show that there is a Gs-set, G, and an F,-set, F', such that F C E C G and \(E'\ F) =
MG\ E)=0.

(b) Referring to part (a), deduce that \(F') = AM(E) = A\(G).

We begin by proving the following claim: for each € > 0, there is an open set, O, with £ C O
and A\(O \ E) < e. First suppose that \(E) < co. We have

AE) = \*(E) = inf {Zl([n) : {I,}>2, open intervals, £ C U [n} ,
n=1

n=1

and so A\(E) +e€ is not a lower bound for {> 7 I(I,) : {I,,}3°, open intervals, E C | J 7, I,,}.
This means that there is some sequence {J,,}°°, of open intervals such that E C (J >~ J,
and Y 7 I(J,) < AM(E) +e If we put O =, Jn, then O is open and E C O. We also

have
A0) < A Zz +e

n=1

and so, since A\(E) is finite, A(O \ E) = A(O) — )\(E) < €. This proves the claim for £ € M
with finite measure.

Now let E € M be arbitrary, and fix e > 0. Put £, = {z € F: |z| <n} = E,N(—n,n) for
each natural number n, so that A(E,) < 2n < oo and E = (J -, E,. By what we showed
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above, for each n we can find an open set O,, such that E,, C O, and \(O, \ E,)) < €/2™.
Let O =J.2, O,. Then O is open, E C O, and

MO\ E) :)\<G O\ GEH>
= A(U(On\En)>

n=1

< i)\(On \ E,)
< ie/Z"

= 6,
completing the proof of the claim.

For each n € N, let G,, be an open set containing E such that \(G, \ E) < 1/n. The
existence of such a set is guaranteed by the claim proved above. Put G = N2, G,,. Then G
is a Gs-set and E C GG. We have

MG\ E)<XNG,\E)<1/n
for all n, so we conclude that A(G'\ F) = 0.

Note that £¢ € M, so the claim above allows us to find, for each n € A/, an open set O,
such that E¢ C O, and A(O, \ E°) < 1/n. Let F,, = O¢. Then F, is closed (since O, is
open), and E° C O, implies that F,, C E. Since E\ F,, = ENO,, =0, NE =0, \ E°,
we have A(E'\ F,,) = A\(O,, \ E°) < 1/n. Now let F =J >~ | F,, so that F is an F,-set with
F C E. We have

ME\F)<XNE\F,)<1/n

for each n, and so A(E'\ F)) = 0.

Finally, observe that since F' C E, we have
ME)=AME)+AME\F)=ANF)+0=X\F).
Similarly, since £ C GG, we have
MG)=AME)+ MG\ E)=\NE)+0=\E).

Hence \(F) = A\(E) = A(G). B
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4.16. Prove that the measure space, (R, M,\), is the completion of the measure space,
(R, B, \j5). Use the following steps:

(a) Verify that B C M by employing Exercise 3.32.

(b) Show that B > M by applying Exercise 3.44.

(c) Prove that A = \5.

Let B € B. That is, suppose we can write B = AU C, where A € B and C is a subset of
some Borel set with Lebesgue measure 0. By Exercise 3.32, C' € M. Since A € B C M and
C € M, the union B = AU C must be in M as well, M being closed under unions. This
shows that B C M.

Now let £ € M. Choose F' € B and G € B as in Exercise 3.44 so that ' C F C G,
AME\F)=XG\E)=0,and \(F) = A(E) = AM(G). Note that G\ F' = G U F*° € B since

B is closed under complements and unions, and that
MG\ F)=M(G\E)U(E\F))=XE\F)+XG\E)=0.

This means that F'\ F is a subset of a Borel set with measure 0. We have £ = FU (E'\ F),
and so F E the union of a Borel set and a subset _of a Borel set with measure 0. This means
that F € B, and consequently we conclude that B D M.

Having proved that M = B, it remains to show that A = )\_|B. To this end, suppose
E e M =PB. We can write E = AU C, where A € B and C is a subset of some Borel set
with Lebesgue measure 0 (so A(C) = 0). We have A C E, hence A\(A) < A\(E), and

AME) = MAUC) < MA) + A(C) = A(A) + 0.

It follows that A(E) = A(A). Since A\z(E) = A(A) by definition, we have A(E) = \(E),
completing the proof.

4.80. Suppose that f € LY, A, p). Show that for each € > 0, there is a 6 > 0 such that
p(E) < & implies [ |f|dp <e.

Define a nondecreasing sequence { f,,}>2; of nonnegative functions by

ful) = {|f<as>| if | ()] <

n otherwise

for each n € N. This sequence converges pointwise to |f], so by the Monotone Convergence
Theorem,

lim h@z/WW-
Q

n—oo 0
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Since fQ fndu < fQ |f| dp < oo for all n, this means that we can choose an n large enough
to ensure

Jurtdn= [ godu= [ (1= 1) dn <2 1)

Next, note that f, < n, and so [, fodu < [, ndp = nu(E) for any E € A. Put 6 = €/2n.
Then p(E) < § implies

/E fudp < np(E) < ¢/2. 2)

It follows that if u(E) < d, then

Jistdn= [ 1= au+ [ oo

s/ﬂ(!f\—fn) du+/Efndu
< N —

< e/;gy (1) < €/2 by (2)

< €,

which is what we wanted to show. B

4.147. Denote by By the smallest o-algebra of subsets of R? that contains all open sets of
R2. Members of By are called two-dimensional Borel sets.

(a) Show that By = B x B.

(b) A measure on By is called a two-dimensional Borel measure. Suppose that u and v are
finite two-dimensional Borel measures such that (A x B) = v(A x B) for all A,B € B.
Prove that = v.

Let us first prove that B, is contained in B x B. To do this we will use the fact that the set,
7T, of open rectangles of the form (a,b) x (¢,d) with a,b,¢c,d € Q, forms a countable basis
for the topology on R2. If U is an open subset of R?, then we can write U as a countable
union of elements of 7. But each element of 7 is of the form (a,b) x (¢, d), where (a,b) € B
and (c¢,d) € B, so clearly elements of 7 are contained in B x B. Hence U is a countable
union of elements of B x B, and therefore U € B x B. This shows that B x B is a o-algebra
containing all open sets of R2. Since B, is the smallest o-algebra containing the open sets,
it follows that By C B x B.

To show that B x B C B;, we will show that every measurable rectangle is in By. Consider

the set B, = {A x R : A € B} of subsets of R?. Note that

(A°XxR)=(AxR)  and <O An> X R = D(Aan).

n=1
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Therefore, since each A € B can be obtained by taking complements and countable unions of
open subsets of R, each A x R € B, can be obtained by taking complements and countable
unions of sets of the form (U x R), where U C R is open. But each (U x R) is open in R?,
and therefore is an member of Bs, as are complements and countable unions of sets of this
form. It follows that B, C B,. Similar reasoning shows that B, = {R x B : B € B} C Bs.
Now suppose that A € Band B € B. Then A x B= (A x R)N (R x B) is the intersection
of two members of By, and so A x B € B, since By is closed under unions. This shows that
Bs is a g-algebra containing the set

U={AxB:AeBand B € B}

of measurable rectangles. As B x B is the smallest o-algebra containing U, it follows that
B x B C B,. Having also shown the reverse containment, we now conclude that By = B x B.

Now suppose that p and v are finite two-dimensional Borel measures such that u(A x B) =
V(A x B) for all A, B € B. This means that py;; = vy, where

U={AXxB:AecBand B € B}

is the semialgebra of measurable rectangles of R?. The o-algebra generated by U is B x B,
which by what we showed above is equal to Bs. Since p and v are finite measures, Corollary
4.7 — one of the corollaries to the uniqueness portion of the Extension Theorem — implies
that 4 = v on the measurable space (R? B;). B
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