1. [Carrier, Krook and Pearson Section 2-1 Exercise 1] Show that no purely real function can be analytic, unless it is a constant.
Consider a function $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$ and where u and v are real functions. For f to be purely real means $v(x, y)=0$. For f to be analytic means $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ hold at every point in the complex plane. Therefore, if f is a purely-real analytic function, it follows that $u_{x}=0$ and $u_{y}=0$. Now $u_{x}=0$ implies for y_{0} fixed that the function $x \rightarrow u\left(x, y_{0}\right)$ is constant and similarly $u_{y}=0$ implies for x_{0} fixed that the function $y \rightarrow u\left(x_{0}, y\right)$ is constant.

Let $c=u\left(x_{0}, y_{0}\right)$. Consider any point $x_{1}+i y_{1}$ in the complex plane. Since $x \rightarrow u\left(x, y_{0}\right)$ is constant holding y_{0} fixed, then $u\left(x_{1}, y_{0}\right)=u\left(x_{0}, y_{0}\right)=c$. Since $y \rightarrow u\left(x_{1}, y\right)$ is constant holding x_{1} fixed, then $u\left(x_{1}, y_{1}\right)=u\left(x_{1}, y_{0}\right)=c$. It follows that u is identically equal to c throughout the entire complex plane. Therefore f is constant.

Math 715 Homework 1 Solutions
2. [Carrier, Krook and Pearson Section 2-2 Exercise 1] Evaluate

$$
\int_{1+i}^{3-2 i} \sin z d z
$$

in two ways. First by choosing any path between the two end points and using real integrals as in

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(u d y+v d x) \tag{2-5}
\end{equation*}
$$

and second by use of an indefinite integral. Show that the inequality

$$
\begin{equation*}
\left|\int_{C} f(z) d z\right| \leq \int_{C}|f(z)||d z| \leq M L \tag{2-6}
\end{equation*}
$$

where $|f| \leq M$ and L is the length of C is satisfied.
The trigonometric identities

$$
\begin{aligned}
\sin z & =\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y \\
\cos z & =\cos (x+i y)=\cos x \cosh y-i \sin x \sinh y
\end{aligned}
$$

will be used in this exercise.
First, consider the path C given by

which may be written as the sum of the paths $\left[\gamma_{1}\right]$ and $\left[\gamma_{2}\right]$ where $\gamma_{1}(t)=1+i(1-3 t)$ and $\gamma_{2}(t)=(1+2 t)-2 i$. Since

$$
\int_{C} \sin z d z=\int_{C}(\sin x \cosh y d x-\cos x \sinh y d y)+i \int_{C}(\sin x \cosh y d y+\cos x \sinh y d x)
$$

compute the real path integrals

$$
\begin{gathered}
\int_{\left[\gamma_{1}\right]}(\sin x \cosh y d x-\cos x \sinh y d y)=-\int_{1}^{-2} \cos 1 \sinh y d y=-\cos 1(\cosh 2-\cosh 1) \\
\int_{\left[\gamma_{2}\right]}(\sin x \cosh y d x-\cos x \sinh y d y)=\int_{1}^{3} \sin x \cosh 2 d x=(\cos 1-\cos 3) \cosh 2
\end{gathered}
$$

Math 715 Homework 1 Solutions

$$
\begin{aligned}
& i \int_{\left[\gamma_{1}\right]}(\sin x \cosh y d y+\cos x \sinh y d x)=i \int_{1}^{-2} \sin 1 \cosh y d y=-i \sin 1(\sinh 2+\sinh 1) \\
& i \int_{\left[\gamma_{2}\right]}(\sin x \cosh y d y+\cos x \sinh y d x)=-i \int_{1}^{3} \cos x \sinh 2 d x=i(\sin 1-\sin 3) \sinh 2
\end{aligned}
$$

and add them to obtain

$$
\int_{C} \sin z d z=\cos 1 \cosh 1-\cos 3 \cosh 2-i(\sin 1 \sinh 1+\sin 3 \sinh 2)
$$

This finishes the computation using real path integrals.
Second, compute using an indefinite integral to obtain

$$
\begin{aligned}
\int_{1+i}^{3-2 i} \sin z d z & =-\cos (3-2 i)+\cos (1+i) \\
& =-\cos 3 \cosh 2-i \sin 3 \sinh 2+\cos 1 \cosh 1-i \sin 1 \sinh 1
\end{aligned}
$$

This answer is the same as the answer found using the path integrals.
We now show inequality (2-6) is satisfied. The term of the left hand side is

$$
\begin{aligned}
\left|\int_{C} \sin z d z\right| & =|\cos (1+i)-\cos (3-2 i)| \\
& \approx|4.558275530-1.500720276 i| \approx 4.798962091
\end{aligned}
$$

To approximate the integral

$$
\int_{C}|\sin z||d z|
$$

use numerical techniques. The Maple script

```
1 \# Compute integral \(|f(z)||d z|\) along the path gamma1+gamma2
2 restart;
\(\mathrm{f}:=\mathrm{z}->\sin (\mathrm{z})\);
gamma1: \(=t->1+\mathrm{I} *(1-3 * \mathrm{t})\);
gamma2:=t-> (1+2*t) \(-2 * I\);
I1:=Integrate (abs(f(gamma1 (t))*diff(gamma1 ( t\(), \mathrm{t})\) ), \(\mathrm{t}=0 . .1\) );
F1:=evalf(I1);
```



```
F2:=evalf(I2);
10 print("The integral \(|f(z)||d z|\) is approximately", F1+F2);
```

gives the output

$$
\begin{gathered}
f:=z \rightarrow \sin (z) \\
\text { gamma1 }:=t \rightarrow 1+(1-3 t) I \\
\text { gamma2 }:=t \rightarrow 2 t+1-2 I
\end{gathered}
$$

Math 715 Homework 1 Solutions

$$
\text { F1 }:=4.468016320
$$

$$
\text { F2 }:=7.429875986
$$

"The integral $|f(z)||d z|$ is approximately", 11.89789231

Therefore

$$
\int_{C}|\sin z||d z| \approx 11.89789231
$$

Finally we compute M using Maple

```
# Find the maximum value of |f(z)| on gamma1 and gamma2
restart;
_EnvAllSolutions:=true;
f:=z->}\operatorname{sin}(z)
g:=t->1+I*(1-3*t);
ff:=f(g(t))*conjugate(f(g(t))) assuming t::real;
dff:=diff(ff,t);
cp:=solve(dff=0,t);
k:=0;
for j from 1 to nops([cp])
do
    for i from -3 to 3
    do
        c:=evalf(subs(_Z1=i,cp[j]));
        if(abs(Im(c))<0.00001 and Re(c)<1 and Re(c)>0)
        then
            k:=k+1;
            cpn[k]:=abs(c);
        end
    end
```

Math 715 Homework 1 Solutions

```
end;
cps:=[0.0, seq(cpn[n],n=1..k),1.0];
v1:=seq(abs(f(g(cps[n]))),n=1..nops(cps));
print("The maximum of |f(z)| on gamma1 is",max(v1));
g:=t-> (1+2*t)-2*I;
ff:=f(g(t))*conjugate(f(g(t))) assuming t::real;
dff:=diff(ff,t);
cp:=solve(dff=0,t);
k:=0;
for j from 1 to nops([cp])
do
    for i from -3 to 3
    do
                c:=evalf(subs(_Z2=i,cp[j]));
                if(abs(Im(c))<0.00001 and Re(c)<1 and Re(c)>0)
                then
                    k:=k+1;
                    cpn[k]:=abs(c);
                end
            end
end;
cps:=[0.0,seq(cpn[n],n=1..k),1.0];
v2:=seq(abs(f(g(cps[n]))),n=1..nops(cps));
print("The maximum of |f(z)| on gamma2 is",max(v2));
print("The maximum of |f(z)| on C is", max(v1,v2));
print("LM is",5*max(v1,v2));
```

with the results

```
                _EnvAllSolutions := true
            f := z -> sin(z)
                g := t -> 1 + (1 - 3 t) I
                ff := sin(1 + (1-3 t) I) }\operatorname{sin}(1-(1-3t) I
dff := -3 I cos(1 + (1-3t) I) }\operatorname{sin}(1-(1-3t)I
    + 3I sin(1 + (1-3t) I) cos(1-(1-3t)I)
```

$\mathrm{cp}:=-1 / 3 \mathrm{I} \mid 1+\mathrm{I}-\arctan \left(-1+\left(1+\tan (2)^{21 / 2}\right) \quad \mid\right.$
$21 / 2$

Math 715 Homework 1 Solutions

$$
\begin{aligned}
& 1+(1+\tan (2)) \quad \mid \\
& -1 / 3 \mathrm{I}\left|1+\mathrm{I}+\arctan (-----------------)-\mathrm{Pi} \quad \mathrm{Z} 1^{\sim}\right| \\
& \mathrm{k}:=0 \\
& \text { cps }:=[0 ., 0.3333333333,1.0] \\
& \text { v1 }:=1.445396576,0.8414709848,3.723196185 \\
& \text { "The maximum of }|f(z)| \text { on gamma1 is", 3.723196185 } \\
& \mathrm{g}:=\mathrm{t} \rightarrow 2 \mathrm{t}+1-2 \mathrm{I} \\
& \text { ff }:=\sin (2 t+1-2 I) \sin (2 t+1+2 I) \\
& \text { dff := } 2 \cos (2 t+1-2 I) \sin (2 t+1+2 I) \\
& +2 \sin (2 t+1-2 I) \cos (2 t+1+2 I) \\
& 21 / 2 \\
& 1+(1-\tanh (4)) \quad \text { Pi _Z2~ } \\
& \mathrm{cp}:=-1 / 2+\mathrm{I}-1 / 2 \mathrm{I} \operatorname{arctanh}\left(--1+\frac{\mathrm{tanh}(4))}{\tanh (4)}+\frac{\mathrm{Pi}}{2},\right. \\
& 21 / 2 \\
& -1+(1-\tanh (4)) \quad \text { Pi _Z2~ }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}:=0 \\
& \text { cps }:=[0 ., 0.2853981635,1.0] \\
& \text { v2 }:=3.723196185,3.762195691,3.629604837 \\
& \text { "The maximum of }|f(z)| \text { on gamma2 is", 3.762195691 } \\
& \text { "The maximum of }|f(z)| \text { on } C \text { is", } 3.762195691 \\
& \text { "LM is", } 18.81097846
\end{aligned}
$$

Therefore $M \approx 3.762195691$ and $L=3+2=5$ so that $L M \approx 18.81097846$. Since

$$
4.798962091 \leq 11.89789231 \leq 18.81097846
$$

we have shown that inequality (2-6) is satisfied for the curve C.
3. [Carrier, Krook and Pearson Section 2-2 Exercise 8a] Show that formal, term-by-term differentiation, or integration, of a power series yields a new power series with the same radius of convergence.
Term-by-term Differentiation. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ have radius of convergence R and $g(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ have radius of convergence r. Claim $R=r$.

First show $r \geq R$. Let z be such that $0<|z|<R$. Choose w such that $|z|<|w|<R$. Then by (1-5) on page 9 we have that the series for $f(w)$ converges absolutely. Thus,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right||w|^{n}<\infty
$$

Now, let $\alpha=|z| /|w|$. Then $0<\alpha<1$ and so $n \alpha^{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $n \alpha^{n}$ is bounded by some constant A so that $n \alpha^{n} \leq A$ for all n. Now,

$$
\sum_{n=1}^{\infty} n\left|a_{n}\right||z|^{n-1}=\frac{1}{|z|} \sum_{n=1}^{\infty} n\left|a_{n}\right||w|^{n} \alpha^{n} \leq \frac{A}{|z|} \sum_{n=1}^{\infty}\left|a_{n}\right||w|^{n}<\infty
$$

shows that the series for $g(z)$ converges for any $|z|<R$. It follows that $r \geq R$.
Second show that $R \leq r$. Suppose $|z|<r$. Then by (1-5) on page 9 we have that the series for $g(z)$ converges absolutely. Thus,

$$
\sum_{n=1}^{\infty} n\left|a_{n}\right||z|^{n-1}<\infty
$$

Now,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}=\left|a_{0}\right|+|z| \sum_{n=1}^{\infty}\left|a_{n}\right||z|^{n-1} \leq\left|a_{0}\right|+|z| \sum_{n=1}^{\infty} n\left|a_{n}\right||z|^{n-1}<\infty .
$$

shows that the series for $f(z)$ converges for any $|z|<r$. It follows that $R \leq r$.
Term-by-term Integration. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ have radius of convergence R and $h(z)=\sum_{n=0}^{\infty} \frac{1}{n+1} a_{n} z^{n+1}$ have radius of convergence ρ. Claim $R=\rho$.

First show that $R \leq \rho$. Suppose $|z|<R$. Then by (1-5) on page 9 we have that the series for $f(z)$ converges absolutely. Thus,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}<\infty
$$

Now,

$$
\sum_{n=0}^{\infty} \frac{1}{n+1}\left|a_{n}\right||z|^{n+1} \leq|z| \sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}<\infty .
$$

shows that the series for $h(z)$ converges for any $|z|<R$. It follows that $R \leq \rho$.

Math 715 Homework 1 Solutions

Second show $R \geq \rho$. Let z be such that $0<|z|<\rho$. Choose w such that $|z|<|w|<\rho$. Then by (1-5) on page 9 we have that the series for $h(w)$ converges absolutely. Thus,

$$
\sum_{n=0}^{\infty} \frac{1}{n+1}\left|a_{n}\right||w|^{n+1}<\infty
$$

Now, let $\alpha=|z| /|w|$. Let A be the bound so that $n \alpha^{n} \leq A$ for all n. Now,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}=\frac{1}{|z|} \sum_{n=0}^{\infty} \frac{1}{n+1}\left|a_{n}\right||w|^{n+1}(n+1) \alpha^{n+1} \leq \frac{A}{|z|} \sum_{n=0}^{\infty} \frac{1}{n+1}\left|a_{n}\right||w|^{n+1}<\infty
$$

shows that the series for $f(z)$ converges for any $|z|<\rho$. It follows that $R \geq \rho$.
4. [Carrier, Krook and Pearson Section 2-2 Exercise 8b] The uniform-convergence property of a power series implies that term-by-term integration yields the integral of the sum function. Show that the integrated sum function is single valued and analytic within the circle of convergence.
Let R be the radius of convergence of the infinite series defining f and h in part a. Let

$$
f_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k} \quad \text { and } \quad h_{n}(z)=\sum_{k=0}^{n} \frac{1}{k+1} a_{k} z^{k+1}
$$

Suppose ξ and z are such that $|\xi|<R$ and $|z|<R$. Let $\Gamma=\{\gamma(t): t \in[0, t]\}$ be any path such that $\gamma(0)=z, \gamma(1)=\xi$ and $|\gamma(t)|<R$ for $t \in[0,1]$. Since f_{n} is a polynomial, it is analytic. Therefore the path integral along Γ is path independent and since $h_{n}^{\prime}=f_{n}$ we obtain

$$
\int_{\Gamma} f_{n}(\zeta) d \zeta=\int_{z}^{\xi} f_{n}(\zeta) d \zeta=h_{n}(\xi)-h_{n}(z)
$$

Since $|\gamma(t)|<R$ for $t \in[0,1]$ then there is $\eta>0$ such that $|\gamma(t)| \leq R-\eta$ for $t \in[0,1]$. From the results on page 9 we obtain that

$$
f_{n}(\gamma(t)) \rightarrow f(\gamma(t)) \quad \text { uniformly in } t \text { as } n \rightarrow \infty
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\Gamma} f_{n}(\zeta) d \zeta & =\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{\Gamma} f(\zeta) d \zeta
\end{aligned}
$$

It follows that

$$
\int_{\Gamma} f(\zeta) d \zeta=\lim _{n \rightarrow \infty}\left(h_{n}(\xi)-h_{n}(z)\right)=h(\xi)-h(z)
$$

Since this equality holds for any Γ inside the radius of convergence, the integral is path independent. Therefore, we may write

$$
\int_{z}^{\xi} f(\zeta) d \zeta=h(\xi)-h(z)
$$

for any z and ξ such that $|\xi|<R$ and $|z|<R$ where the integral is to be interpreted as a path integral along along any path from z to ξ that lies strictly inside the radius of convergence. Since h is single valued then the integrated sum function is single valued.

We now claim h is analytic and $h^{\prime}(z)=f(z)$. Let $\epsilon>0$. Since f is continuous at z there is $\delta>0$ so that $|\zeta-z|<\delta$ implies $|f(\zeta)-f(z)|<\epsilon$. Define $\gamma(t)=\xi(1-t)+z t$ so that $\gamma^{\prime}(t)=z-\xi$. Now, $|\xi-z|<\delta$ implies $|\gamma(t)-z|<\delta$ for $t \in[0,1]$ and therefore

$$
\begin{aligned}
\left|\frac{h(\xi)-h(z)}{\xi-z}-f(z)\right| & =\left|\int_{\Gamma} \frac{f(\zeta)-f(z)}{z-\xi} d \zeta\right|=\left|\int_{0}^{1} \frac{f(\gamma(t))-f(z)}{z-\xi} \gamma^{\prime}(t) d t\right| \\
& \leq \int_{0}^{1}|f(\gamma(t))-f(z)| d t<\int_{0}^{1} \epsilon d t=\epsilon
\end{aligned}
$$

Consequently $h^{\prime}(z)=f(z)$ for every $|z|<R$.
5. [Carrier, Krook and Pearson Section 2-2 Exercise 8c] Show that a power series converges to an analytic function within its circle of convergence.
Consider the power series for $f(z)$ defined above with radius of convergence equal to R. By part a the function $g(z)$ also has radius of convergence equal to R. Since $f(z)$ may be obtained from $g(z)$ through term by term integration of $g(z)$ we have by part b that $f^{\prime}(z)=g(z)$ for every z such that $|z|<R$. Thus, f is differentiable and therefore analytic in its circle of convergence.

Math 715 Homework 1 Solutions

6. [Carrier, Krook and Pearson Section 2-3 Exercise 1] Use Cauchy's integral formula to evaluate the integral around the unit circle $|z|=1$ of

$$
\frac{\sin z}{2 z+i}, \quad \frac{\ln (z+2)}{z+2}, \quad \frac{z^{3}+\operatorname{asinh}(z / 2)}{z^{2}+i z+i} \quad \text { and } \quad \cot z
$$

Let $D=\{z:|z|<1\}$ be the unit disk and $\Gamma=\partial D$ be its boundary oriented in the positive (counterclockwise) direction. Since $\sin z$ is analytic on D and $-i / z$ is contained within it, then Cauchy's formula implies

$$
\int_{\Gamma} \frac{\sin z}{2 z+i}=\frac{1}{2} \int_{\Gamma} \frac{\sin z}{z+i / 2}=\pi i \sin (-i / 2)=-\pi i \sin (i / 2)
$$

Since

$$
\sin z=\frac{\exp (i z)-\exp (-i z)}{2 i}
$$

then

$$
\sin (i / 2)=\frac{\exp (-1 / 2)-\exp (1 / 2)}{2 i}=i \frac{\exp (1 / 2)-\exp (-1 / 2)}{2}=i \sinh (1 / 2)
$$

It follows that

$$
\int_{\Gamma} \frac{\sin z}{2 z+i}=\pi \sinh (1 / 2)
$$

For the next integral note that, by definition, the principle branch $\ln z$ of the logarithm is the inverse of the function

$$
z \rightarrow \exp (z):\{x+i y: x \in \mathbf{R} \text { and } y \in(-\pi, \pi]\} \rightarrow \mathbf{C}
$$

Therefore $\ln z$ is analytic on the domain $\mathbf{C} \backslash(-\infty, 0]$ and consequently $\ln z+2$ is analytic on $\mathbf{C} \backslash(-\infty,-2]$. It follows that

$$
\frac{\ln z+2}{z+2}
$$

is analytic in an open set containing \bar{D}. By Cauchy's theorem we have

$$
\int_{\Gamma} \frac{\ln (z+2)}{z+2}=0
$$

For the next integral note that

$$
\sinh z=\frac{\exp (z)-\exp (-z)}{2}
$$

Setting $\psi=\sinh z$ and $\omega=\exp z$ yields

$$
\begin{equation*}
2 \omega \psi=\omega^{2}-1 \tag{*}
\end{equation*}
$$

Completing the square and factoring yields

$$
(\omega-\psi)^{2}=\psi^{2}+1
$$

We would like to take square roots to solve for ω. Recall that the principle branch of the square root function is defined as

$$
r e^{i \theta} \rightarrow \sqrt{r} e^{i \theta / 2} \quad \text { for } \quad \theta \in(-\pi, \pi] .
$$

This function is analytic on $\mathbf{C} \backslash(-\infty, 0]$. The only time $\psi^{2}+1 \in(-\infty, 0]$ is when

$$
\psi \in i(-\infty,-1] \quad \text { or } \quad \psi \in i[1, \infty)
$$

Therefore the map

$$
\psi \rightarrow \psi+\sqrt{\psi^{2}+1}
$$

is analytic on $\mathbf{C} \backslash(i(-\infty,-1] \cup i[1, \infty))$.
From $(*)$ observe that if $\omega \leq 0$ then $\psi \in \mathbf{R}$. However, $\psi \in \mathbf{R}$ implies $\omega=$ $\psi+\sqrt{\psi^{2}+1}>0$, which is a contradiction. Therefore, it can't happen that $\omega \leq 0$. Consequently the function

$$
\psi \rightarrow \log \left(\psi+\sqrt{\psi^{2}+1}\right)
$$

is analytic on $\mathbf{C} \backslash(i(-\infty,-1] \cup i[1, \infty))$. As a result

$$
\operatorname{asinh}(z)=\log \left(z+\sqrt{z^{2}+1}\right)
$$

is an inverse to $\sinh (z)$ which is analytic on $\mathbf{C} \backslash(i(-\infty,-1] \cup i[1, \infty))$. In particular $\sinh (z / 2)$ is analytic on a neighborhood of the unit disk D.

Note that $z^{2}+i z+i=\left(z-z_{1}\right)\left(z-z_{2}\right)$ where

$$
\left|z_{1}\right|=\left|\frac{-i+\sqrt{-1-4 i}}{2}\right|>1 \quad \text { and } \quad\left|z_{2}\right|=\left|\frac{-i-\sqrt{-1-4 i}}{2}\right|<1 .
$$

Therefore

$$
\frac{z^{3}+\operatorname{asinh}(z / 2)}{z-z_{1}}
$$

is analytic on D. It follows from Cauchy's formula that

$$
\int_{\Gamma} \frac{z^{3}+\operatorname{asinh}(z / 2)}{z^{2}+i z+i} d z=2 \pi i \frac{z_{2}^{3}+\operatorname{asinh}\left(z_{2} / 2\right)}{z_{2}-z_{1}} \approx-0.04880+1.8762 i .
$$

For the final integral note that

$$
\cot z=\frac{\cos z}{\sin z}
$$

and that

$$
\sin z=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} z^{2 k+1}=z\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} z^{2 k}\right)=z \operatorname{sinc} z
$$

where $\operatorname{sinc} z$ is defined by the absolutely convergent series in parenthesis shown above. Since the only zeros of $\sin z$ are $z=k \pi$ where $k \in \mathbf{Z}$ then the only zeros of $\operatorname{sinc} z$ are for $z=k \pi$ where $k \in \mathbf{Z} \backslash\{0\}$. It follows that $\frac{\cos z}{\operatorname{sinc} z}$ is analytic on D. Consequently

$$
\int_{\Gamma} \cot z d z=2 \pi i\left(\frac{\cos 0}{\operatorname{sinc} 0}\right)=2 \pi i
$$

Math 715 Homework 1 Solutions

7. [Carrier, Krook and Pearson Section 2-3 Exercise 2] If $\Phi(z)$ is analytic in a simply connected region in which a closed contour C is drawn, obtain all possible values of

$$
\int_{C} \frac{\Phi(\zeta)}{\zeta^{2}-z^{2}}
$$

where z is not a point on C itself.
Let $C=\partial \Omega$ be the boundary of an open set and $S=\bar{\Omega}$ be a set on which the Green's theorem holds. Consider separately two cases. The first where $z=0$ and the second where $z \neq 0$. If $z=0$, the possible values of the integral in question are given by

$$
\int_{C} \frac{\Phi(\zeta)}{\zeta^{2}}= \begin{cases}2 \pi i \Phi^{\prime}(0) & \text { for } 0 \in \Omega \\ 0 & \text { for } 0 \notin \Omega\end{cases}
$$

If $z \neq 0$, we note that $\zeta^{2}-z^{2}=(\zeta-z)(\zeta+z)$. Therefore, the possible values are

$$
\int_{C} \frac{\Phi(\zeta)}{\zeta^{2}-z^{2}}= \begin{cases}\pi i \Phi(z) z^{-1}-\pi i \Phi(-z) z^{-1} & \text { for } z \in \Omega \text { and }-z \in \Omega \\ \pi i \Phi(z) z^{-1} & \text { for } z \in \Omega \text { and }-z \notin \Omega \\ -\pi i \Phi(-z) z^{-1} & \text { for } z \notin \Omega \text { and }-z \in \Omega \\ 0 & \text { for } z \notin \Omega \text { and }-z \notin \Omega\end{cases}
$$

If one also considers closed contours C that do not necessarily bound a domain, then the contours may wind around the singularities multiple times. In this case we obtain the following possibilities

$$
2 \pi i k \Phi^{\prime}(0) \quad \text { and } \quad \pi i k_{1} \Phi(z) z^{-1}-\pi i k_{2} \Phi(-z) z^{-1}
$$

where $k, k_{1}, k_{2} \in \mathbf{Z}$.

Math 715 Homework 1 Solutions

8. [Carrier, Krook and Pearson Section 2-3 Exercise 3] If n is an integer, positive or negative, and if C is a closed contour around the origin, use

$$
\begin{equation*}
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \tag{2-14}
\end{equation*}
$$

to show that

$$
\int_{C} \frac{d z}{z^{n}}=0 \quad \text { unless } \quad n=1
$$

If $n \leq 0$ then $1 / z^{n}$ is analytic. Therefore, Cauchy's theorem implies

$$
\int_{C} \frac{d z}{z^{n}}=0
$$

If $n>1$, we write $f(z)=1$ so that $f^{(n-1)}(z)=0$. Then (2-14) implies

$$
\int_{C} \frac{1}{z^{n}} d z=\frac{2 \pi i}{(n-1)!} f^{(n-1)}(0)=0
$$

Finally, if $n=1$ then

$$
\int_{C} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{1}{e^{i t}} i e^{i t} d t=\int_{0}^{2 \pi} i d t=2 \pi i
$$

which is non-zero.

Math 715 Homework 1 Solutions
9. [Carrier, Krook and Pearson Section 2-3 Exercise 6] Show, that if $\Phi(z)$ is any function continuous on C and if a function $f(z)$ is defined for z include C by

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{\Phi(\zeta)}{\zeta-z} d \zeta
$$

then $f(z)$ is analytic inside C. Invent an example to illustrate the fact that, as an interior point z approaches a boundary point z_{0}, then $f(z)$ need not approach $\Phi\left(z_{0}\right)$. To show that $f(z)$ is analytic, it is enough to show it has a derivative. By definition,

$$
f^{\prime}(z)=\lim _{\xi \rightarrow z} \frac{f(\xi)-f(z)}{\xi-z}
$$

Therefore, it remains to show that this limit exists. Now,

$$
\begin{aligned}
\frac{f(\xi)-f(z)}{\xi-z} & =\frac{1}{\xi-z} \cdot \frac{1}{2 \pi i} \int_{C} \Phi(\zeta)\left(\frac{1}{\zeta-\xi}-\frac{1}{\zeta-z}\right) d \zeta \\
& =\frac{1}{2 \pi i} \int_{C} \Phi(\zeta)\left(\frac{1}{(\zeta-\xi)(\zeta-z)}\right) d \zeta \\
& =\frac{1}{2 \pi i} \int_{C} \Phi(\zeta)\left(\frac{1}{(\zeta-z)^{2}}+\frac{1}{(\zeta-\xi)(\zeta-z)}-\frac{1}{(\zeta-z)^{2}}\right) d \zeta \\
& =\frac{1}{2 \pi i} \int_{C} \Phi(\zeta)\left(\frac{1}{(\zeta-z)^{2}}+\frac{\xi-z}{(\zeta-\xi)(\zeta-z)^{2}}\right) d \zeta \\
& =\frac{1}{2 \pi i} \int_{C} \frac{\Phi(\zeta)}{(\zeta-z)^{2}}\left(1+\frac{\xi-z}{\zeta-\xi}\right) d \zeta
\end{aligned}
$$

It follows that

$$
\left|\frac{f(\xi)-f(z)}{\xi-z}-\frac{1}{2 \pi i} \int_{C} \frac{\Phi(\zeta)}{(\zeta-z)^{2}} d \zeta\right| \leq \frac{1}{2 \pi}\left|\int_{C} \frac{\Phi(\zeta)}{(\zeta-z)^{2}}\left(\frac{\xi-z}{\zeta-\xi}\right) d \zeta\right|
$$

Now since $\Phi(\zeta)$ is continuous on C it's maximum exists and we may define

$$
M=\max \{|\Phi(\zeta)|: \zeta \in C\}
$$

Since $z \notin C$ then

$$
\mu=\operatorname{dist}(z, C)=\min \{|z-\zeta|: \zeta \in C\}>0
$$

Finally, if ξ is close enough to z then also $\xi \notin C$. Consequently,

$$
\nu=\operatorname{dist}(\xi, C)>0 .
$$

By assumption $C=\{\gamma(t): t \in[0,1]\}$ where $\gamma(t)$ is a differentiable function such that

$$
L=\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t<0
$$

Math 715 Homework 1 Solutions

Therefore, follows that

$$
\begin{aligned}
\frac{1}{2 \pi}\left|\int_{C} \frac{\Phi(\zeta)}{(\zeta-z)^{2}}\left(\frac{\xi-z}{\zeta-\xi}\right) d \zeta\right| & \leq \frac{1}{2 \pi} \int_{0}^{1}\left|\frac{\Phi(\gamma(t))}{(\gamma(t)-z)^{2}}\right|\left|\frac{\xi-z}{\gamma(t)-\xi}\right|\left|\gamma^{\prime}(t)\right| d t \\
& \leq \frac{1}{2 \pi} \frac{M L}{\mu^{2} \nu}|\xi-z| \rightarrow 0
\end{aligned}
$$

as $\xi \rightarrow z$. Therefore $f(z)$ is analytic at each point inside C.
For an example where $f(z)$ does not approach $\Phi\left(z_{0}\right)$ as the interior point z approaches a boundary point z_{0}, consider

$$
\Phi(z)=\operatorname{Re}(z), \quad z_{0}=1 \quad \text { and } \quad C=\{\exp (i t): t \in[-\pi, \pi]\}
$$

Now

$$
\Phi(z)=\operatorname{Re}(z) \rightarrow 1 \quad \text { as } \quad z \rightarrow 1
$$

However,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta & =\frac{1}{2 \pi i} \int_{-\pi}^{\pi} \frac{\cos t}{e^{i t}-z} i e^{i t} d t=\frac{1}{4 \pi i} \int_{-\pi}^{\pi} \frac{e^{i t}+e^{-i t}}{e^{i t}-z} i e^{i t} d t \\
& =\frac{1}{4 \pi i} \int_{C} \frac{\zeta+\zeta^{-1}}{\zeta-z} d \zeta=\frac{1}{4 \pi i} \int_{C} \frac{\zeta^{2}+1}{(\zeta-z) \zeta} d \zeta \\
& =\frac{1}{2}\left(\frac{z^{2}+1}{z}-\frac{1}{z}\right)=\frac{z}{2} \rightarrow \frac{1}{2} \quad \text { as } \quad z \rightarrow 1 .
\end{aligned}
$$

Math 715 Homework 1 Solutions
10. [Carrier, Krook and Pearson Section 2-3 Exercise 7] A function $\Phi(z)$ is known to be continuous throughout a simply connected region and to have the property that

$$
\int_{C} \Phi(z) d z=0
$$

for any closed contour in that region. Show that $\Phi(z)$ must be analytic in that region. Let Ω be the simple region mentioned above. For $z_{0} \in \Omega$ fixed, define

$$
F(\xi)=\int_{\Gamma} \Phi(\zeta) d \zeta \quad \text { for } \quad \xi \in \Omega
$$

where $\Gamma=\{\gamma(t): t \in[0,1]\}$ is any path that remains inside Ω and such that $\gamma(0)=z_{0}$ and $\gamma(1)=\xi$. Claim that $F(\xi)$ is independent of the path Γ. Consider two different paths $\Gamma_{i}=\left\{\gamma_{i}(t): t \in[0,1]\right\}$ such that $\gamma_{i}(0)=z_{0}$ and $\gamma_{i}(1)=\xi$ for $i=1,2$. Let

$$
C=\{c(t): t \in[0,2]\} \quad \text { where } \quad c(t)= \begin{cases}\gamma_{1}(t) & \text { for } t \in[0,1] \\ \gamma_{2}(2-t) & \text { for } t \in(1,2] .\end{cases}
$$

Then C is a closed contour and $c(t)$ is pathwise differentiable. It follows that

$$
\begin{aligned}
0=\int_{C} \Phi(\zeta) d \zeta & =\int_{0}^{2} \Phi(c(t)) c^{\prime}(t) d t \\
& =\int_{0}^{1} \Phi\left(\gamma_{1}(t)\right) \gamma_{1}^{\prime}(t) d t+\int_{1}^{2} \Phi\left(\gamma_{2}(2-t)\right)\left(-\gamma_{2}^{\prime}(2-t)\right) d t
\end{aligned}
$$

Setting $s=2-t$ so that $d s=-d t$ yields

$$
\int_{1}^{2} \Phi\left(\gamma_{2}(2-t)\right)\left(-\gamma_{2}^{\prime}(2-t)\right) d t=-\int_{0}^{1} \Phi\left(\gamma_{2}(s)\right) \gamma_{2}^{\prime}(s) d s
$$

Therefore

$$
\int_{\Gamma_{1}} \Phi(\zeta) d \zeta=\int_{\Gamma_{2}} \Phi(\zeta) d \zeta
$$

which shows the integral defining F does not depend on the choice of path.
Claim F is differentiable on Ω. Let $z \in \Omega$ be fixed. Since Ω is open, there is $\alpha>0$ such that $B_{\alpha}(z) \subseteq \Omega$. Therefore, for ξ such that $|\xi-z|<\alpha$, the straight line path

$$
\Gamma_{3}=\left\{\gamma_{3}(t): t \in[0,1]\right\} \quad \text { where } \quad \gamma_{3}(t)=z+t(\xi-z)
$$

lies entirely within Ω. It follows that

$$
\frac{F(\xi)-F(z)}{\xi-z}=\frac{1}{\xi-z}\left(\int_{z_{0}}^{\xi} \Phi(\zeta) d \zeta-\int_{z_{0}}^{z} \Phi(\zeta) d \zeta\right)=\frac{1}{\xi-z} \int_{z}^{\xi} \Phi(\zeta) d \zeta
$$

Math 715 Homework 1 Solutions
Therefore

$$
\begin{aligned}
\left|\frac{F(\xi)-F(z)}{\xi-z}-\Phi(z)\right| & =\left|\frac{1}{\xi-z} \int_{0}^{1}\left(\Phi\left(\gamma_{3}(t)\right)-\Phi(z)\right) \gamma_{3}^{\prime}(t) d t\right| \\
& \left.\leq \int_{0}^{1} \mid \Phi\left(\gamma_{3}(t)\right)-\Phi(z)\right) \mid d t
\end{aligned}
$$

Given $\varepsilon>0$, since Φ is continuous, there exists $\delta>0$ with $\delta<\alpha$ such that $|\xi-z|<\delta$ implies $|\Phi(\xi)-\Phi(z)|<\varepsilon$. It follows that

$$
\left|\frac{F(\xi)-F(z)}{\xi-z}-\Phi(z)\right| \leq \varepsilon \quad \text { whenever } \quad|\xi-z|<\delta
$$

Therefore the limit exists and $F^{\prime}(z)=\Phi(z)$ for every $z \in \Omega$. It follows that F is analytic and consequently that Φ is also analytic.

