Maximum Modulus Theorem. Suppose f is analytic on a connected open set () and
that | f(z)| attains a maximum at some point zg € €. Then f is identically constant.

Proof. Suppose R > 0 is chosen so that a neighborhood of the disk of radius R centered
at zo is contained in Q. Let A = {( : | — 20| < R} be the disk. The proof now procedes
in four steps.

Step 1. Claim that
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Proof of Step 1. Let v(t) = 2o + r7e*™ where 0 < r < R. By the Cauchy formula
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Since |f(C)| < [f(z0)] for every ¢ € A then
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Therefore, this inequality must in fact be an equality.
Step 2. Claim that |f(¢)| = |f(z0)| for every ¢ € A.

Proof of Step 2. For contradiction suppose there was (y € A such that |f({o)| < |f(z0)|-
Since f is continuous there exists h > 0 and ¢ > 0 such that 6 < |29 — (p| and

(O] +h <|f(z0)] for every 1€ — (o] < 6.

Define B={(:|C— (o] <d}. Then B C A and
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which is a contradiction.



Step 3. Claim that f({) = f(z9) for every ¢ € A.

Proof of Step 3. If | f(20)] = 0 then |f({)] = 0 for every ¢ € A. Thus f(¢) =0 = f(z0)
for every ¢ € A and we are done. Otherwise, Let f({) = u(z,y)+iv(z,y) where { = z+1y.
Since |f(¢)| is constant for ( € A we have that
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Applying the Cauchy-Riemann equations u, = v, and u, = —v, we obtain
Uy + VUuy = 0 and Uy — VUy = 0

After a little algebra one obtains
(u* +v*)u, =0 and (u? + v?)u, = 0.

Since u? + v? = |f(20)|* > 0 then the above equations imply that u, = 0 and u, = 0.
Therefore u is constant. Since u, = 0 and u, = 0 the Cauchy-Riemann equations imply
vy = 0 and vy, = 0. Therefore v is also constant. If follows that f({) = f(zo) for all ( € A.

Step 4. Claim that f is constant on all of €.

Proof of Step 4. In class we drew some intersecting circles and said since €2 was connected
then f must be constant on all of {2. For those who have taken a course in point-set topology
here are the full details.

Define W = {z € Q : f(2) = f(20)}. Since f is continuous then W is closed in the
topology relative to 2. We shall show W is also open. For each z € W choose R, > 0 so
that a neighborhood of the disk A, = {{ : | — 2| < R.} is contained in §2. The previous
steps applied to A, implies f({) = f(z) for every ( € A,. Since f(z) = f(zo) for every
z € W then A, C W for every z € W. Therefore
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Since the A, are open, then their union W is open. Therefore W is both open and closed
in the topology relative to Q. If follows that © \ W is also both open and closed in the
relative topology. Since (2 is connected it can not be equal any nontrivial disjoint union of
open sets. Since zg € W is follows that W = (). Therefore f is constant on all of 2.



