
Maximum Modulus Theorem. Suppose f is analytic on a connected open set Ω and
that |f(z)| attains a maximum at some point z0 ∈ Ω. Then f is identically constant.

Proof. Suppose R > 0 is chosen so that a neighborhood of the disk of radius R centered
at z0 is contained in Ω. Let A = { ζ : |ζ − z0| < R } be the disk. The proof now procedes
in four steps.

Step 1. Claim that
1

πR2

∫
A

|f(ζ)| dA = |f(z0)|.

Proof of Step 1. Let γ(t) = z0 + re2πit where 0 < r < R. By the Cauchy formula

f(z0) =
1

2πi

∫
[γ]

f(ζ)

ζ − z0
dζ =

1

2πi

∫ 1

0

f(z0 + re2πit)

re2πit
r2πie2πit dt

=

∫ 1

0

f(z0 + re2πit) dt =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

Therefore

R2

2
f(z0) =

∫ R

0

f(z0) rdr =
1

2π

∫ R

0

∫ 2π

0

f(z0 + reiθ) dθ rdr =
1

2π

∫
A

f(ζ) dA.

Since |f(ζ)| ≤ |f(z0)| for every ζ ∈ A then

|f(z0)| ≤
1

πR2

∫
A

|f(ζ)| dA ≤
1

πR2

∫
A

|f(z0)| dA = |f(z0)|.

Therefore, this inequality must in fact be an equality.

Step 2. Claim that |f(ζ)| = |f(z0)| for every ζ ∈ A.

Proof of Step 2. For contradiction suppose there was ζ0 ∈ A such that |f(ζ0)| < |f(z0)|.
Since f is continuous there exists h > 0 and δ > 0 such that δ < |z0 − ζ0| and

|f(ζ)|+ h < |f(z0)| for every |ζ − ζ0| < δ.

Define B = { ζ : |ζ − ζ0| < δ }. Then B ⊆ A and

|f(z0)| =
1

πR2

∫
A

|f(ζ)| dA =
1

πR2

∫
A\B

|f(ζ)| dA+
1

πR2

∫
B

|f(ζ)| dA

=
1

πR2

∫
A\B

|f(z0)| dA+
1

πR2

∫
B

(|f(z0)| − h) dA

=
1

πR2

∫
A

|f(z0)| dA−
1

πR2

∫
B

h dA = |f(z0)| − h
δ2

R2
< |f(z0)|

which is a contradiction.
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Step 3. Claim that f(ζ) = f(z0) for every ζ ∈ A.

Proof of Step 3. If |f(z0)| = 0 then |f(ζ)| = 0 for every ζ ∈ A. Thus f(ζ) = 0 = f(z0)
for every ζ ∈ A and we are done. Otherwise, Let f(ζ) = u(x, y)+ iv(x, y) where ζ = x+ iy.
Since |f(ζ)| is constant for ζ ∈ A we have that

d

dx
|f(ζ)|2 = 2uux + 2vvx = 0 and

d

dy
|f(ζ)|2 = 2uuy + 2vvy = 0.

Applying the Cauchy-Riemann equations ux = vy and uy = −vx we obtain

uuy + vux = 0 and uux − vuy = 0

After a little algebra one obtains

(u2 + v2)uy = 0 and (u2 + v2)ux = 0.

Since u2 + v2 = |f(z0)|
2 > 0 then the above equations imply that uy = 0 and ux = 0.

Therefore u is constant. Since uy = 0 and ux = 0 the Cauchy-Riemann equations imply
vx = 0 and vy = 0. Therefore v is also constant. If follows that f(ζ) = f(z0) for all ζ ∈ A.

Step 4. Claim that f is constant on all of Ω.

Proof of Step 4. In class we drew some intersecting circles and said since Ω was connected
then f must be constant on all of Ω. For those who have taken a course in point-set topology
here are the full details.

Define W = { z ∈ Ω : f(z) = f(z0) }. Since f is continuous then W is closed in the
topology relative to Ω. We shall show W is also open. For each z ∈ W choose Rz > 0 so
that a neighborhood of the disk Az = { ζ : |ζ − z| < Rz} is contained in Ω. The previous
steps applied to Az implies f(ζ) = f(z) for every ζ ∈ Az. Since f(z) = f(z0) for every
z ∈ W then Az ⊆ W for every z ∈ W . Therefore

W ⊆
⋃
z∈W

Az ⊆ W implies W =
⋃
z∈W

Az.

Since the Az are open, then their union W is open. Therefore W is both open and closed
in the topology relative to Ω. If follows that Ω \ W is also both open and closed in the
relative topology. Since Ω is connected it can not be equal any nontrivial disjoint union of
open sets. Since z0 ∈ W is follows that W = Ω. Therefore f is constant on all of Ω.
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