Cauchy–Riemann Equations. Let f(z) = u(x, y) + iv(x, y) where z = x + iy. If f is a complex differentiable function then $u_x = v_y$ and $v_x = -u_y$.

Proof. Suppose f is differentiable at z. Then the limit

$$f'(z) = \lim_{\substack{h \to 0\\h \in \mathbf{C}}} \frac{f(z+h) - f(z)}{h}$$

exists. Since the limit exists as $h \to 0$ through all complex numbers, then it also exists as $h \to 0$ approaches through the real numbers. Therefore, the limits

$$\lim_{\substack{h \to 0\\h \in \mathbf{R}}} \frac{f(z+h) - f(z)}{h} \quad \text{and} \quad \lim_{\substack{ih \to 0\\h \in \mathbf{R}}} \frac{f(z+ih) - f(z)}{ih}$$

are both equal to f'(z). Computing yields that

$$\lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{f(z+h) - f(z)}{h} = \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{\left(u(x+h,y) + iv(x+h,y)\right) - \left((u(x,y) + iv(x,y)\right)}{h}$$
$$= \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{u(x+h,y) - u(x,y)}{h} + \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} i \frac{v(x+h,y) - iv(x,y)}{h}$$
$$= u_x(x,y) + iv_x(x,y)$$

and

$$\lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{f(z+ih) - f(z)}{ih} = \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{\left(u(x,y+h) + iv(x,y+h)\right) - \left((u(x,y) + iv(x,y)\right)}{ih}$$
$$= \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{u(x,y+h) - u(x,y)}{ih} + \lim_{\substack{h \to 0 \\ h \in \mathbf{R}}} \frac{v(x,y+h) - iv(x,y)}{h}$$
$$= \frac{1}{i}u_y(x,y) + v_y(x,y) = -iu_y(x,y) + v_y(x,y).$$

It follows that $u_x = v_y$ and $v_x = -u_y$.

Green's Theorem. [Folland, Advanced Calculus, page 223] Suppose S is a regular region in \mathbb{R}^2 , that is, let S be a compact set that is the closure of its interior. Further suppose that S has a piecewise smooth boundary ∂S . If P and Q are C^1 on S then

$$\int_{\partial S} P dx + Q dy = \int_{S} \left(Q_x - P_y \right) dx \, dy.$$

Note the path integral over ∂S is to be taken in the positive sense. This means that if

$$\partial = \cup_j \Gamma_j$$
 where $\Gamma_j = \{\gamma_j(t) : t \in [0, 1]\}$

then $\gamma_j(t)$ is a one-to-one piecewise differentiable function such that as t increases the region S lies to the left of $\gamma_j(t)$.

Cauchy's Formula. Let $R \subseteq \mathbf{C}$ be open and f be a complex differentiable function defined on R. Let Ω be open and suppose $S = \overline{\Omega} \subset R$ is a set on which Green's Theorem holds. Then

$$\int_{\partial\Omega} f(z)dz = 0.$$

Proof. Writing f(z) = u(x, y) + iv(x, y) where z = x + iy we apply Green's Theorem to obtain

$$\int_{\partial\Omega} f(z)dz = \int_{\partial\Omega} \left(u(x,y) + iv(x,y) \right) d(x+iy)$$

=
$$\int_{\partial\Omega} u(x,y)dx - v(x,y)dy + i \int_{\partial\Omega} v(x,y)dx + u(x,y)dy$$

=
$$\int_{\Omega} \left(-v_x - u_y \right) dx \, dy + i \int_{\Omega} \left(u_x - v_y \right) dx \, dy$$

Since f is differentiable on R then the Cauchy–Riemann equations $u_x = v_y$ and $v_x = -u_y$ hold at every point in Ω . It follows that the last two integrals above are zero.

Lemma for Cauchy's Formula. Let $B_{\rho}(z_0) = \{z : |z - z_0| < \rho\}$ be the open ball of radius ρ centered at z_0 . Then

$$\int_{\partial B_{\rho}(z_0)} \frac{1}{\zeta - z_0} \, d\zeta = 2\pi i.$$

Proof. Translating by z_0 we may rewrite the integral in terms of $z = \zeta - z_0$ over the set $\partial B_{\rho}(0)$. Since, with positive orientation

$$\partial B_{\rho}(0) = \left\{ \gamma(t) : t \in [0, 2\pi] \right\} \quad \text{where} \quad \gamma(t) = \rho \cos t + i\rho \sin t,$$

then

$$\int_{\partial B_{\rho}(0)} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{\gamma(t)} \gamma'(t) dt = \int_{0}^{2\pi} \frac{-\rho \sin t + i\rho \cos t}{\rho \cos t + i\rho \sin t} dt$$
$$= \int_{0}^{2\pi} \frac{-\sin t + i\cos t}{\cos t + i\sin t} \cdot \frac{\cos t - i\sin t}{\cos t - i\sin t} dt$$
$$= \int_{0}^{2\pi} i \frac{\cos^2 t + \sin^2 t}{\cos^2 t + \sin^2 t} dt = 2\pi i.$$

Cauchy's Formula. Let R, Ω and f be as in the statement of Cauchy's theorem. Then

$$f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} d\zeta \quad for \quad z \in \Omega.$$

Proof. Let $\rho > 0$ be so small that $\overline{B}_{\rho}(z) \subset \Omega$ and define $\Omega' = \Omega \setminus \overline{B}_{\rho}(z) = \Omega \cap B_{\rho}(z)^c$ where $B_{\rho}(z)^c = \{ \zeta : |\zeta - z| > \rho \}$ is the complement of $\overline{B}_{\rho}(z)$. It follows that

$$\partial \Omega' = \partial \Omega \cup \partial B_{\rho}(z)^c.$$

By Cauchy's theorem

$$\int_{\partial\Omega'} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} \, d\zeta + \int_{\partial B_{\rho}(z)^c} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 0$$

since $z \notin \Omega'$ implies $f(\zeta)/(\zeta - z)$ is differentiable on a neighborhood of Ω' . Therefore

$$\begin{aligned} \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} \, d\zeta &= -\frac{1}{2\pi i} \int_{\partial B_{\rho}(z)^c} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \int_{\partial B_{\rho}(z)} \frac{f(\zeta)}{\zeta - z} \, d\zeta \\ &= \frac{1}{2\pi i} \int_{\partial B_{\rho}(z)} \frac{f(z)}{\zeta - z} \, d\zeta + \frac{1}{2\pi i} \int_{\partial B_{\rho}(z)} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta \\ &= f(z) + \frac{1}{2\pi i} \int_{\partial B_{\rho}(z)} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta. \end{aligned}$$

We claim that the last integral tends to zero as $\rho \to 0$. Since f is differentiable at z then f is continuous at z. Therefore, given $\epsilon > 0$ there is $\delta > 0$ such that $|\zeta - z| < \delta$ implies $|f(\zeta) - f(z)| < \epsilon$. Taking $\rho \le \delta$ and $\gamma(t) = z + \rho \cos(t) + \rho i \sin(t)$ yields

$$\left| \int_{\partial B_{\rho}(z)} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta \right| \le \int_{0}^{2\pi} \frac{|f(\gamma(t)) - f(z)|}{|\gamma(t) - z|} |\gamma'(t)| \, dt \le \int_{0}^{2\pi} \frac{\epsilon}{\rho} \rho \, dt = 2\pi\epsilon.$$

Since ϵ was arbitrary, we obtain

$$\lim_{\rho \to 0} \int_{\partial B_{\rho}(z)} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta = 0.$$

The result now follows.

Cauchy's Derivative Formula. Let R, Ω and f be as in the statement of Cauchy's theorem. Then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \quad \text{for} \quad z \in \Omega.$$

Proof. Since $z \in \Omega$ and Ω is open, then there exists an open set U such that $\overline{U} \subset \Omega$ and $z \in U$. Since the derivatives

$$\frac{d^n}{dz^n}\frac{1}{\zeta-z} = \frac{n!}{(\zeta-z)^{n+1}}$$

are continuous for $z \in \overline{U}$ and $\zeta \in \partial \Omega$, then the Leibniz integral rule allows us to differentiate through the integral sign in Cauchy's formula. Consequently

$$f^{(n)}(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{d^n}{dz^n} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{(\zeta - z)^{n+1}} \, d\zeta \qquad \text{for} \qquad z \in \Omega.$$

Convergence of Taylor's Series. Suppose f is differentiable on the set $B_r(z_0)$. Then

$$f(z) = \sum_{k=0}^{\infty} \frac{(z-z_0)^k}{k!} f^{(k)}(z_0) \quad \text{for} \quad z \in B_r(z_0).$$

Proof. Let $\rho < r$. Taking $R = B_r(z_0)$ and $\Omega = B_\rho(z_0)$ satisfies the hypothesis of Cauchy's formula. By the geometric series formula

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \Big/ \Big(1 + \frac{\zeta - z}{\zeta - z_0} - 1 \Big) = \frac{1}{\zeta - z_0} \Big/ \Big(1 - \frac{z - z_0}{\zeta - z_0} \Big)$$
$$= \frac{1}{\zeta - z_0} \sum_{k=0}^{\infty} \Big(\frac{z - z_0}{\zeta - z_0} \Big)^k \quad \text{for} \quad \Big| \frac{z - z_0}{\zeta - z_0} \Big| < 1.$$

Moreover, for any $\gamma < 1$ the convergence is uniform for $z \in B_{\gamma\rho}(z_0)$ and $\zeta \in \partial B_{\rho}(z_0)$. Therefore, we may intechange the limit with the integral in Cauchy's formula and then apply Cauchy's derivative formula to obtain

$$f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \sum_{k=0}^{\infty} \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{\zeta - z_0} \left(\frac{z - z_0}{\zeta - z_0}\right)^k$$
$$= \sum_{k=0}^{\infty} (z - z_0)^k \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} = \sum_{k=0}^{\infty} \frac{(z - z_0)^k}{k!} f^{(k)}(z_0)$$

for every $z \in B_{\gamma}\rho(z_0)$. Since the above holds for any $\gamma < 1$ and $\rho < r$, taking the limits $\rho \to r$ and $\gamma \to 1$ yields the same equality for $z \in B_r(z_0)$.

Maximal Radius of Analyticity. As shown by problem 8 on page 37, a power series defines a differentiable function on its radius of convergence. Suppose

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \quad for \quad z \in B_r(z_0)$$

where r is the maximal radius on which the power series converges. Then, it is impossible to extend f to a differentiable function defined on $B_{\rho}(z_0)$ for any $\rho > r$.

Proof. For contradiction, suppose there existed $\rho > r$ and a differentiable function g defined on $B_{\rho}(z_0)$ such that g(z) = f(z) for $z \in B_r(z_0)$. By the theorem on the convergence of Taylor series it follows that

$$g(z) = \sum_{k=0}^{\infty} \frac{(z-z_0)^k}{k!} g^{(k)}(z_0) \quad \text{for} \quad z \in B_{\rho}(z_0).$$

Since the Taylor series expanded about the point z_0 are the same for g and f then

$$a_k = \frac{g^{(k)}(z_0)}{k!}.$$

But then $\rho > r$ contradicts r being maximal. Therefore, no differentiable extension of f defined on $B_{\rho}(z_0)$ for $\rho > r$ could exist.

Exponential Function. The exponential function defined by the power series

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} \quad for \quad z \in \mathbf{C}$$

satisfies the identities

$$\frac{d}{dz}\exp(z) = \exp(z)$$
 and $\exp(z+w) = \exp(z)\exp(w).$

Proof. By the ratio test

$$\lim_{k \to \infty} \left| \frac{z^{k+1}/(k+1)!}{z^k/k!} \right| = \lim_{k \to \infty} \frac{|z|}{k+1} = 0$$

shows the radius of convergence is ∞ . From problem 8 on page 37 it follows that $\exp(z)$ is differentiable with derivative obtained using term-by-term differentiation. Thus

$$\frac{d}{dz}\exp(z) = \sum_{k=0}^{\infty} \frac{d}{dz} \frac{z^k}{k!} = \sum_{k=1}^{\infty} \frac{z^{k-1}}{(k-1)!} = \exp(z).$$

As the series is absolutely convergent we can rearrange it. Setting m = k + l we obtain

$$\exp(z)\exp(w) = \sum_{k=0}^{\infty} \frac{z^k}{k!} \sum_{l=0}^{\infty} \frac{w^l}{l!} = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{z^k}{k!} \frac{w^l}{l!} = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{z^k}{k!} \frac{w^{m-k}}{(m-k)!}$$
$$= \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m} \binom{m}{k} z^k w^{m-k} = \sum_{m=0}^{\infty} \frac{1}{m!} (z+w)^m = \exp(z+w)$$