Cauchy-Riemann Equations. Let $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$. If f is a complex differentiable function then $u_{x}=v_{y}$ and $v_{x}=-u_{y}$.
Proof. Suppose f is differentiable at z. Then the limit

$$
f^{\prime}(z)=\lim _{\substack{h \rightarrow 0 \\ h \in \mathbf{C}}} \frac{f(z+h)-f(z)}{h}
$$

exists. Since the limit exists as $h \rightarrow 0$ through all complex numbers, then it also exists as $h \rightarrow 0$ approaches through the real numbers. Therefore, the limits

$$
\lim _{\substack{h \rightarrow 0 \\ h \in \mathbf{R}}} \frac{f(z+h)-f(z)}{h} \quad \text { and } \quad \lim _{\substack{i h \rightarrow 0 \\ h \in \mathbf{R}}} \frac{f(z+i h)-f(z)}{i h}
$$

are both equal to $f^{\prime}(z)$. Computing yields that

$$
\begin{aligned}
\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{f(z+h)-f(z)}{h} & =\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{(u(x+h, y)+i v(x+h, y))-((u(x, y)+i v(x, y))}{h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{u(x+h, y)-u(x, y)}{h}+\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} i \frac{v(x+h, y)-i v(x, y)}{h} \\
& =u_{x}(x, y)+i v_{x}(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{f(z+i h)-f(z)}{i h} & =\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{(u(x, y+h)+i v(x, y+h))-((u(x, y)+i v(x, y))}{i h} \\
& =\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{u(x, y+h)-u(x, y)}{i h}+\lim _{\substack{h \rightarrow 0 \\
h \in \mathbf{R}}} \frac{v(x, y+h)-i v(x, y)}{h} \\
& =\frac{1}{i} u_{y}(x, y)+v_{y}(x, y)=-i u_{y}(x, y)+v_{y}(x, y) .
\end{aligned}
$$

It follows that $u_{x}=v_{y}$ and $v_{x}=-u_{y}$.
Green's Theorem. [Folland, Advanced Calculus, page 223] Suppose S is a regular region in \mathbf{R}^{2}, that is, let S be a compact set that is the closure of its interior. Further suppose that S has a piecewise smooth boundary ∂S. If P and Q are C^{1} on S then

$$
\int_{\partial S} P d x+Q d y=\int_{S}\left(Q_{x}-P_{y}\right) d x d y
$$

Note the path integral over ∂S is to be taken in the positive sense. This means that if

$$
\partial=\cup_{j} \Gamma_{j} \quad \text { where } \quad \Gamma_{j}=\left\{\gamma_{j}(t): t \in[0,1]\right\}
$$

then $\gamma_{j}(t)$ is a one-to-one piecewise differentiable function such that as t increases the region S lies to the left of $\gamma_{j}(t)$.

Cauchy's Formula. Let $R \subseteq \mathbf{C}$ be open and f be a complex differentiable function defined on R. Let Ω be open and suppose $S=\bar{\Omega} \subset R$ is a set on which Green's Theorem holds. Then

$$
\int_{\partial \Omega} f(z) d z=0
$$

Proof. Writing $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$ we apply Green's Theorem to obtain

$$
\begin{aligned}
\int_{\partial \Omega} f(z) d z & =\int_{\partial \Omega}(u(x, y)+i v(x, y)) d(x+i y) \\
& =\int_{\partial \Omega} u(x, y) d x-v(x, y) d y+i \int_{\partial \Omega} v(x, y) d x+u(x, y) d y \\
& =\int_{\Omega}\left(-v_{x}-u_{y}\right) d x d y+i \int_{\Omega}\left(u_{x}-v_{y}\right) d x d y
\end{aligned}
$$

Since f is differentiable on R then the Cauchy-Riemann equations $u_{x}=v_{y}$ and $v_{x}=-u_{y}$ hold at every point in Ω. It follows that the last two integrals above are zero.

Lemma for Cauchy's Formula. Let $B_{\rho}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<\rho\right\}$ be the open ball of radius ρ centered at z_{0}. Then

$$
\int_{\partial B_{\rho}\left(z_{0}\right)} \frac{1}{\zeta-z_{0}} d \zeta=2 \pi i
$$

Proof. Translating by z_{0} we may rewrite the integral in terms of $z=\zeta-z_{0}$ over the set $\partial B_{\rho}(0)$. Since, with positive orientation

$$
\partial B_{\rho}(0)=\{\gamma(t): t \in[0,2 \pi]\} \quad \text { where } \quad \gamma(t)=\rho \cos t+i \rho \sin t
$$

then

$$
\begin{aligned}
\int_{\partial B_{\rho}(0)} \frac{1}{z} d z & =\int_{0}^{2 \pi} \frac{1}{\gamma(t)} \gamma^{\prime}(t) d t=\int_{0}^{2 \pi} \frac{-\rho \sin t+i \rho \cos t}{\rho \cos t+i \rho \sin t} d t \\
& =\int_{0}^{2 \pi} \frac{-\sin t+i \cos t}{\cos t+i \sin t} \cdot \frac{\cos t-i \sin t}{\cos t-i \sin t} d t \\
& =\int_{0}^{2 \pi} i \frac{\cos ^{2} t+\sin ^{2} t}{\cos ^{2} t+\sin ^{2} t} d t=2 \pi i
\end{aligned}
$$

Cauchy's Formula. Let R, Ω and f be as in the statement of Cauchy's theorem. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta \quad \text { for } \quad z \in \Omega
$$

Proof. Let $\rho>0$ be so small that $\bar{B}_{\rho}(z) \subset \Omega$ and define $\Omega^{\prime}=\Omega \backslash \bar{B}_{\rho}(z)=\Omega \cap B_{\rho}(z)^{c}$ where $B_{\rho}(z)^{c}=\{\zeta:|\zeta-z|>\rho\}$ is the complement of $\bar{B}_{\rho}(z)$. It follows that

$$
\partial \Omega^{\prime}=\partial \Omega \cup \partial B_{\rho}(z)^{c}
$$

By Cauchy's theorem

$$
\int_{\partial \Omega^{\prime}} \frac{f(\zeta)}{\zeta-z} d \zeta=\int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta+\int_{\partial B_{\rho}(z)^{c}} \frac{f(\zeta)}{\zeta-z} d \zeta=0
$$

since $z \notin \Omega^{\prime}$ implies $f(\zeta) /(\zeta-z)$ is differentiable on a neighborhood of Ω^{\prime}. Therefore

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta & =-\frac{1}{2 \pi i} \int_{\partial B_{\rho}(z)^{c}} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{\partial B_{\rho}(z)} \frac{f(\zeta)}{\zeta-z} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial B_{\rho}(z)} \frac{f(z)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{\partial B_{\rho}(z)} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta \\
& =f(z)+\frac{1}{2 \pi i} \int_{\partial B_{\rho}(z)} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta
\end{aligned}
$$

We claim that the last integral tends to zero as $\rho \rightarrow 0$. Since f is differentiable at z then f is continuous at z. Therefore, given $\epsilon>0$ there is $\delta>0$ such that $|\zeta-z|<\delta$ implies $|f(\zeta)-f(z)|<\epsilon$. Taking $\rho \leq \delta$ and $\gamma(t)=z+\rho \cos (t)+\rho i \sin (t)$ yields

$$
\left|\int_{\partial B_{\rho}(z)} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta\right| \leq \int_{0}^{2 \pi} \frac{|f(\gamma(t))-f(z)|}{|\gamma(t)-z|}\left|\gamma^{\prime}(t)\right| d t \leq \int_{0}^{2 \pi} \frac{\epsilon}{\rho} \rho d t=2 \pi \epsilon .
$$

Since ϵ was arbitrary, we obtain

$$
\lim _{\rho \rightarrow 0} \int_{\partial B_{\rho}(z)} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta=0
$$

The result now follows.

Cauchy's Derivative Formula. Let R, Ω and f be as in the statement of Cauchy's theorem. Then

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \quad \text { for } \quad z \in \Omega
$$

Proof. Since $z \in \Omega$ and Ω is open, then there exists an open set U such that $\bar{U} \subset \Omega$ and $z \in U$. Since the derivatives

$$
\frac{d^{n}}{d z^{n}} \frac{1}{\zeta-z}=\frac{n!}{(\zeta-z)^{n+1}}
$$

are continuous for $z \in \bar{U}$ and $\zeta \in \partial \Omega$, then the Leibniz integral rule allows us to differentiate through the integral sign in Cauchy's formula. Consequently

$$
f^{(n)}(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{d^{n}}{d z^{n}} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{n!}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \quad \text { for } \quad z \in \Omega
$$

Convergence of Taylor's Series. Suppose f is differentiable on the set $B_{r}\left(z_{0}\right)$. Then

$$
f(z)=\sum_{k=0}^{\infty} \frac{\left(z-z_{0}\right)^{k}}{k!} f^{(k)}\left(z_{0}\right) \quad \text { for } \quad z \in B_{r}\left(z_{0}\right)
$$

Proof. Let $\rho<r$. Taking $R=B_{r}\left(z_{0}\right)$ and $\Omega=B_{\rho}\left(z_{0}\right)$ satisfies the hypothesis of Cauchy's formula. By the geometric series formula

$$
\begin{aligned}
\frac{1}{\zeta-z} & =\frac{1}{\zeta-z_{0}} /\left(1+\frac{\zeta-z}{\zeta-z_{0}}-1\right)=\frac{1}{\zeta-z_{0}} /\left(1-\frac{z-z_{0}}{\zeta-z_{0}}\right) \\
& =\frac{1}{\zeta-z_{0}} \sum_{k=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{k} \quad \text { for } \quad\left|\frac{z-z_{0}}{\zeta-z_{0}}\right|<1
\end{aligned}
$$

Moreover, for any $\gamma<1$ the convergence is uniform for $z \in B_{\gamma \rho}\left(z_{0}\right)$ and $\zeta \in \partial B_{\rho}\left(z_{0}\right)$. Therefore, we may intechange the limit with the integral in Cauchy's formula and then apply Cauchy's derivative formula to obtain

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} d \zeta=\sum_{k=0}^{\infty} \frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z_{0}}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{k} \\
& =\sum_{k=0}^{\infty}\left(z-z_{0}\right)^{k} \frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}}=\sum_{k=0}^{\infty} \frac{\left(z-z_{0}\right)^{k}}{k!} f^{(k)}\left(z_{0}\right)
\end{aligned}
$$

for every $z \in B_{\gamma} \rho\left(z_{0}\right)$. Since the above holds for any $\gamma<1$ and $\rho<r$, taking the limits $\rho \rightarrow r$ and $\gamma \rightarrow 1$ yields the same equality for $z \in B_{r}\left(z_{0}\right)$.

Maximal Radius of Analyticity. As shown by problem 8 on page 37, a power series defines a differentiable function on its radius of convergence. Suppose

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k} \quad \text { for } \quad z \in B_{r}\left(z_{0}\right)
$$

where r is the maximal radius on which the power series converges. Then, it is impossible to extend f to a differentiable function defined on $B_{\rho}\left(z_{0}\right)$ for any $\rho>r$.
Proof. For contradiction, suppose there existed $\rho>r$ and a differentiable function g defined on $B_{\rho}\left(z_{0}\right)$ such that $g(z)=f(z)$ for $z \in B_{r}\left(z_{0}\right)$. By the theorem on the convergence of Taylor series it follows that

$$
g(z)=\sum_{k=0}^{\infty} \frac{\left(z-z_{0}\right)^{k}}{k!} g^{(k)}\left(z_{0}\right) \quad \text { for } \quad z \in B_{\rho}\left(z_{0}\right)
$$

Since the Taylor series expanded about the point z_{0} are the same for g and f then

$$
a_{k}=\frac{g^{(k)}\left(z_{0}\right)}{k!} .
$$

But then $\rho>r$ contradicts r being maximal. Therefore, no differentiable extension of f defined on $B_{\rho}\left(z_{0}\right)$ for $\rho>r$ could exist.
Exponential Function. The exponential function defined by the power series

$$
\exp (z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \quad \text { for } \quad z \in \mathbf{C}
$$

satisfies the identities

$$
\frac{d}{d z} \exp (z)=\exp (z) \quad \text { and } \quad \exp (z+w)=\exp (z) \exp (w)
$$

Proof. By the ratio test

$$
\lim _{k \rightarrow \infty}\left|\frac{z^{k+1} /(k+1)!}{z^{k} / k!}\right|=\lim _{k \rightarrow \infty} \frac{|z|}{k+1}=0
$$

shows the radius of convergence is ∞. From problem 8 on page 37 it follows that $\exp (z)$ is differentiable with derivative obtained using term-by-term differentiation. Thus

$$
\frac{d}{d z} \exp (z)=\sum_{k=0}^{\infty} \frac{d}{d z} \frac{z^{k}}{k!}=\sum_{k=1}^{\infty} \frac{z^{k-1}}{(k-1)!}=\exp (z)
$$

As the series is absolutely convergent we can rearrange it. Setting $m=k+l$ we obtain

$$
\begin{aligned}
\exp (z) \exp (w) & =\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \sum_{l=0}^{\infty} \frac{w^{l}}{l!}=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{z^{k}}{k!} \frac{w^{l}}{l!}=\sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{z^{k}}{k!} \frac{w^{m-k}}{(m-k)!} \\
& =\sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m}\binom{m}{k} z^{k} w^{m-k}=\sum_{m=0}^{\infty} \frac{1}{m!}(z+w)^{m}=\exp (z+w)
\end{aligned}
$$

