
Cauchy–Riemann Equations. Let f(z) = u(x, y) + iv(x, y) where z = x+ iy. If f is a
complex differentiable function then ux = vy and vx = −uy.

Proof. Suppose f is differentiable at z. Then the limit

f ′(z) = lim
h→0
h∈C

f(z + h)− f(z)

h

exists. Since the limit exists as h → 0 through all complex numbers, then it also exists as
h → 0 approaches through the real numbers. Therefore, the limits

lim
h→0
h∈R

f(z + h)− f(z)

h
and lim

ih→0
h∈R

f(z + ih)− f(z)

ih

are both equal to f ′(z). Computing yields that

lim
h→0
h∈R

f(z + h)− f(z)

h
= lim

h→0
h∈R

(
u(x+ h, y) + iv(x+ h, y)

)
−
(
(u(x, y) + iv(x, y)

)
h

= lim
h→0
h∈R

u(x+ h, y)− u(x, y)

h
+ lim

h→0
h∈R

i
v(x+ h, y)− iv(x, y)

h

= ux(x, y) + ivx(x, y)

and

lim
h→0
h∈R

f(z + ih)− f(z)

ih
= lim

h→0
h∈R

(
u(x, y + h) + iv(x, y + h)

)
−

(
(u(x, y) + iv(x, y)

)
ih

= lim
h→0
h∈R

u(x, y + h)− u(x, y)

ih
+ lim

h→0
h∈R

v(x, y + h)− iv(x, y)

h

=
1

i
uy(x, y) + vy(x, y) = −iuy(x, y) + vy(x, y).

It follows that ux = vy and vx = −uy.

Green’s Theorem. [Folland, Advanced Calculus, page 223] Suppose S is a regular region
in R2, that is, let S be a compact set that is the closure of its interior. Further suppose
that S has a piecewise smooth boundary ∂S. If P and Q are C1 on S then∫

∂S

Pdx+Qdy =

∫
S

(
Qx − Py

)
dx dy.

Note the path integral over ∂S is to be taken in the positive sense. This means that if

∂ = ∪jΓj where Γj = {γj(t) : t ∈ [0, 1]}

then γj(t) is a one-to-one piecewise differentiable function such that as t increases the
region S lies to the left of γj(t).
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Cauchy’s Formula. Let R ⊆ C be open and f be a complex differentiable function defined
on R. Let Ω be open and suppose S = Ω ⊂ R is a set on which Green’s Theorem holds.
Then ∫

∂Ω

f(z)dz = 0.

Proof. Writing f(z) = u(x, y) + iv(x, y) where z = x + iy we apply Green’s Theorem to
obtain ∫

∂Ω

f(z)dz =

∫
∂Ω

(
u(x, y) + iv(x, y)

)
d(x+ iy)

=

∫
∂Ω

u(x, y)dx− v(x, y)dy + i

∫
∂Ω

v(x, y)dx+ u(x, y)dy

=

∫
Ω

(
− vx − uy

)
dx dy + i

∫
Ω

(
ux − vy

)
dx dy

Since f is differentiable on R then the Cauchy–Riemann equations ux = vy and vx = −uy

hold at every point in Ω. It follows that the last two integrals above are zero.

Lemma for Cauchy’s Formula. Let Bρ(z0) = { z : |z − z0| < ρ } be the open ball of
radius ρ centered at z0. Then ∫

∂Bρ(z0)

1

ζ − z0
dζ = 2πi.

Proof. Translating by z0 we may rewrite the integral in terms of z = ζ − z0 over the set
∂Bρ(0). Since, with positive orientation

∂Bρ(0) =
{
γ(t) : t ∈ [0, 2π]

}
where γ(t) = ρ cos t+ iρ sin t,

then ∫
∂Bρ(0)

1

z
dz =

∫ 2π

0

1

γ(t)
γ′(t)dt =

∫ 2π

0

−ρ sin t+ iρ cos t

ρ cos t+ iρ sin t
dt

=

∫ 2π

0

− sin t+ i cos t

cos t+ i sin t
· cos t− i sin t

cos t− i sin t
dt

=

∫ 2π

0

i
cos2 t+ sin2 t

cos2 t+ sin2 t
dt = 2πi.
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Cauchy’s Formula. Let R, Ω and f be as in the statement of Cauchy’s theorem. Then

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ for z ∈ Ω.

Proof. Let ρ > 0 be so small that Bρ(z) ⊂ Ω and define Ω′ = Ω \ Bρ(z) = Ω ∩ Bρ(z)
c

where Bρ(z)
c = { ζ : |ζ − z| > ρ } is the complement of Bρ(z). It follows that

∂Ω′ = ∂Ω ∪ ∂Bρ(z)
c.

By Cauchy’s theorem∫
∂Ω′

f(ζ)

ζ − z
dζ =

∫
∂Ω

f(ζ)

ζ − z
dζ +

∫
∂Bρ(z)c

f(ζ)

ζ − z
dζ = 0

since z ̸∈ Ω′ implies f(ζ)/(ζ − z) is differentiable on a neighborhood of Ω′. Therefore

1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ = − 1

2πi

∫
∂Bρ(z)c

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Bρ(z)

f(ζ)

ζ − z
dζ

=
1

2πi

∫
∂Bρ(z)

f(z)

ζ − z
dζ +

1

2πi

∫
∂Bρ(z)

f(ζ)− f(z)

ζ − z
dζ

= f(z) +
1

2πi

∫
∂Bρ(z)

f(ζ)− f(z)

ζ − z
dζ.

We claim that the last integral tends to zero as ρ → 0. Since f is differentiable at z then
f is continuous at z. Therefore, given ϵ > 0 there is δ > 0 such that |ζ − z| < δ implies
|f(ζ)− f(z)| < ϵ. Taking ρ ≤ δ and γ(t) = z + ρ cos(t) + ρi sin(t) yields∣∣∣∣ ∫

∂Bρ(z)

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤ ∫ 2π

0

|f(γ(t))− f(z)|
|γ(t)− z|

∣∣γ′(t)
∣∣ dt ≤ ∫ 2π

0

ϵ

ρ
ρ dt = 2πϵ.

Since ϵ was arbitrary, we obtain

lim
ρ→0

∫
∂Bρ(z)

f(ζ)− f(z)

ζ − z
dζ = 0.

The result now follows.
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Cauchy’s Derivative Formula. Let R, Ω and f be as in the statement of Cauchy’s
theorem. Then

f (n)(z) =
n!

2πi

∫
∂Ω

f(ζ)

(ζ − z)n+1
dζ for z ∈ Ω.

Proof. Since z ∈ Ω and Ω is open, then there exists an open set U such that U ⊂ Ω and
z ∈ U . Since the derivatives

dn

dzn
1

ζ − z
=

n!

(ζ − z)n+1

are continuous for z ∈ U and ζ ∈ ∂Ω, then the Leibniz integral rule allows us to differentiate
through the integral sign in Cauchy’s formula. Consequently

f (n)(z) =
1

2πi

∫
∂Ω

dn

dzn
f(ζ)

ζ − z
dζ =

n!

2πi

∫
∂Ω

f(ζ)

(ζ − z)n+1
dζ for z ∈ Ω.

Convergence of Taylor’s Series. Suppose f is differentiable on the set Br(z0). Then

f(z) =
∞∑
k=0

(z − z0)
k

k!
f (k)(z0) for z ∈ Br(z0).

Proof. Let ρ < r. Taking R = Br(z0) and Ω = Bρ(z0) satisfies the hypothesis of Cauchy’s
formula. By the geometric series formula

1

ζ − z
=

1

ζ − z0

/(
1 +

ζ − z

ζ − z0
− 1

)
=

1

ζ − z0

/(
1− z − z0

ζ − z0

)
=

1

ζ − z0

∞∑
k=0

(z − z0
ζ − z0

)k

for
∣∣∣z − z0
ζ − z0

∣∣∣ < 1.

Moreover, for any γ < 1 the convergence is uniform for z ∈ Bγρ(z0) and ζ ∈ ∂Bρ(z0).
Therefore, we may intechange the limit with the integral in Cauchy’s formula and then
apply Cauchy’s derivative formula to obtain

f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ =

∞∑
k=0

1

2πi

∫
∂Ω

f(ζ)

ζ − z0

(z − z0
ζ − z0

)k

=

∞∑
k=0

(z − z0)
k 1

2πi

∫
∂Ω

f(ζ)

(ζ − z0)k+1
=

∞∑
k=0

(z − z0)
k

k!
f (k)(z0)

for every z ∈ Bγρ(z0). Since the above holds for any γ < 1 and ρ < r, taking the limits
ρ → r and γ → 1 yields the same equality for z ∈ Br(z0).
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Maximal Radius of Analyticity. As shown by problem 8 on page 37, a power series
defines a differentiable function on its radius of convergence. Suppose

f(z) =
∞∑
k=0

ak(z − z0)
k for z ∈ Br(z0)

where r is the maximal radius on which the power series converges. Then, it is impossible
to extend f to a differentiable function defined on Bρ(z0) for any ρ > r.

Proof. For contradiction, suppose there existed ρ > r and a differentiable function g defined
on Bρ(z0) such that g(z) = f(z) for z ∈ Br(z0). By the theorem on the convergence of
Taylor series it follows that

g(z) =
∞∑
k=0

(z − z0)
k

k!
g(k)(z0) for z ∈ Bρ(z0).

Since the Taylor series expanded about the point z0 are the same for g and f then

ak =
g(k)(z0)

k!
.

But then ρ > r contradicts r being maximal. Therefore, no differentiable extension of f
defined on Bρ(z0) for ρ > r could exist.

Exponential Function. The exponential function defined by the power series

exp(z) =
∞∑
k=0

zk

k!
for z ∈ C

satisfies the identities

d

dz
exp(z) = exp(z) and exp(z + w) = exp(z) exp(w).

Proof. By the ratio test

lim
k→∞

∣∣∣zk+1/(k + 1)!

zk/k!

∣∣∣ = lim
k→∞

|z|
k + 1

= 0

shows the radius of convergence is ∞. From problem 8 on page 37 it follows that exp(z)
is differentiable with derivative obtained using term-by-term differentiation. Thus

d

dz
exp(z) =

∞∑
k=0

d

dz

zk

k!
=

∞∑
k=1

zk−1

(k − 1)!
= exp(z).

As the series is absolutely convergent we can rearrange it. Setting m = k + l we obtain

exp(z) exp(w) =
∞∑
k=0

zk

k!

∞∑
l=0

wl

l!
=

∞∑
k=0

∞∑
l=0

zk

k!

wl

l!
=

∞∑
m=0

m∑
k=0

zk

k!

wm−k

(m− k)!

=
∞∑

m=0

1

m!

m∑
k=0

(
m

k

)
zkwm−k =

∞∑
m=0

1

m!
(z + w)m = exp(z + w).
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