Math 715 Homework 1 Solutions

1. [Carrier, Krook and Pearson Section 2-1 Exercise 1] Show that no purely real function
can be analytic, unless it is a constant.

Consider a function f(z) = u(z,y) + iv(z,y) where z = z + iy and where u and v are real
functions. For f to be purely real means v(z,y) = 0. For f to be analytic means u, = v,
and u, = —v, hold at every point in the complex plane. Therefore, if f is a purely-real
analytic function, it follows that u, = 0 and u, = 0. Now u, = 0 implies for y, fixed that
the function © — u(x,yp) is constant and similarly u, = 0 implies for z fixed that the
function y — u(zg,y) is constant.

Let ¢ = u(zg, yo). Consider any point x1+iy; in the complex plane. Since z — u(x, yo)
is constant holding vy fixed, then u(z1,yo) = u(xo,y0) = ¢. Since y — u(z1,y) is constant
holding 7 fixed, then u(x1,y1) = u(x1,y0) = c. It follows that u is identically equal to ¢
throughout the entire complex plane. Therefore f is constant.
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2. [Carrier, Krook and Pearson Section 2-2 Exercise 1] Evaluate

3—2i
/ sin z dz
144

in two ways. First by choosing any path between the two end points and using real
integrals as in

/Cf(z)dz:L(udx—vdy)+i/(udy+vdx) (2-5)

C

and second by use of an indefinite integral. Show that the inequality

[ fGraz] < [ |51l <z (2-6)
c c
where |f| < M and L is the length of C' is satisfied.

The trigonometric identities

sin z = sin(x 4 iy) = sinz cosh y + i cos x sinh y

cos z = cos(x + iy) = cosx coshy — isinxsinhy

will be used in this exercise.
First, consider the path C' given by

1+1i

Cc

3-2

L e

which may be written as the sum of the paths [y1] and [y2] where 71 (t) = 1+ (1 —3t)
and 7y, (t) = (1 + 2t) — 2i. Since

/ sinzdz = / (sin x cosh y dx — cos z sinh y dy) +i/ (sin x cosh y dy + cos z sinh y dx),
c c C

compute the real path integrals

—2
/ (sinx cosh y dx — cos z sinhy dy) = — / cos 1sinhy dy = —cos 1(cosh2 — cosh 1)
[v1] 1

3
/ (sinx cosh y dx — cos z sinhy dy) = / sin x cosh 2dzx = (cos 1 — cos 3) cosh 2
[v2] 1

2
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-2
i / (sinx coshy dy + cosxsinhy dx) =1 / sin 1 coshy dy = —isin 1(sinh 2 + sinh 1)
[71] 1

3
@/ (sinz coshy dy + cos zsinhy dz) = —i/ cos x sinh 2dx = i(sin 1 — sin 3) sinh 2
[v2] 1
and add them to obtain

/ sinzdz = cos1cosh1l — cos3cosh2 —i(sinlsinhl —|—sin?>sinh2).
C

This finishes the computation using real path integrals.
Second, compute using an indefinite integral to obtain

3-2i
/ sin zdz = — cos(3 — 2i) + cos(1 + 9)
1+

= —cos3cosh2 —isin3sinh2 + cos1lcoshl —¢sin1sinh1.

This answer is the same as the answer found using the path integrals.
We now show inequality (2-6) is satisfied. The term of the left hand side is

‘/ sin z dz
C

To approximate the integral

= | cos(1 + i) — cos(3 — 2))|

~ |4.558275530 — 1.5007202761| ~ 4.798962091.

/ | sin 2{|dz]
C

use numerical techniques. The Maple script

# Compute integral [f(z)|l|dz| along the path gammal+gamma?2
restart;

f:=z->sin(z);

gammal:=t->1+I*(1-3%t);

gamma?2:=t->(1+2%t)-2*I;
I1:=Integrate(abs(f (gammal (t))*diff (gammal(t),t)),t=0..1);
Fl:=evalf(I1l);

I2:=Integrate(abs(f (gamma2(t))*diff (gamma2(t),t)),t=0..1);
F2:=evalf(I2);

print ("The integral |f(z)||dz| is approximately", F1+F2);

© 0 N O Rs W NN

[
(=)

gives the output

f := z -> sin(z)
gammal :=t -> 1+ (1 -3 1t) I

gamma2 :=t -> 2t +1-21
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1
/
|
I1 := | 3| sin(1 + (1 -31t) I) | dt
|
/
0
F1 := 4.468016320
1
/
|
I2 := | 2 | sin(2t +1-21) | dt
|
/
0

F2 := 7.429875986

"The integral |f(z)||dz| is approximately", 11.89789231

Therefore
/ |sin [|d2| ~ 11.89789231.
C

Finally we compute M using Maple

1 # Find the maximum value of [f(z)| on gammal and gamma2
2 restart;
_EnvAllSolutions:=true;

f:=z->sin(z);

g:=t—>1+I*x(1-3%t);

7 ££:=f(g(t))*conjugate(f(g(t))) assuming t::real;
s dff:=diff(ff,t);

9 cp:=solve(dff=0,t);

3
4
5
6

10 k:=0;

11 for j from 1 to nops([cpl)

12 do

13 for i from -3 to 3

14 do

15 c:=evalf (subs(_Z1=i,cpl[jl));
16 if (abs(Im(c))<0.00001 and Re(c)<1l and Re(c)>0)
17 then

18 k:=k+1;

19 cpnlk] :=abs(c);

20 end

21 end



Math 715 Homework 1 Solutions

22 end;

23 cps:=[0.0,seq(cpn[n],n=1..k),1.0];

214 vl1:=seq(abs(f(g(cps[nl]))),n=1. .nops(cps));

25 print ("The maximum of [f(z)| on gammal is",max(vl));
26

27 g:=t—>(1+2%t)-2%I;

28 £f:=f(g(t))*conjugate(f(g(t))) assuming t::real;

20 dff:=diff (ff,t);

30 cp:=solve(dff=0,t);

31 k:=0;

32 for j from 1 to nops([cpl)

33 do

34 for i from -3 to 3

35 do

36 c:=evalf (subs(_Z2=1i,cpl[jl));
37 if (abs(Im(c))<0.00001 and Re(c)<1 and Re(c)>0)
38 then

39 k:=k+1;

10 cpn[k] :=abs(c);

41 end

42 end

43 end;

44 cps:=[0.0,seq(cpn[n],n=1..%k),1.0];

15 v2:=seq(abs(f(g(cps[n]))),n=1..nops(cps));

46 print ("The maximum of [f(z)| on gamma2 is",max(v2));
47

48 print ("The maximum of [£(z)| on C is", max(vl,v2));
49 print ("LM is",5*max(v1,v2));

with the results

_EnvAllSolutions := true
f := z -> sin(z)
g:=t-—>1+01-3%t)I
ff :=sin(1 + (1 - 3 ¢t) I) sin(1 - (1 - 3 t) I)
dff := -3 I cos(1 + (1 -3 t) I) sin(1 - (1 - 3 t) I)
+3Isin(1+ (1 -31%) I cos(1-1-3¢%) 1)
/ 2 1/2
| -1 + (1 + tan(2) )

\
|
cp :=-1/3 I |1 + I - arctan(--—-—-——————————————- ) - Pi _Z17],

\ tan(2) /



Math 715 Homework 1 Solutions

| 1+ (1 + tan(2) ) |
-1/3 I |1 + I + arctan(-——————————----——-——- ) - Pi _Z17|
\ tan(2) /

cps := [0., 0.3333333333, 1.0]
vl := 1.445396576, 0.8414709848, 3.723196185
"The maximum of |f(z)| on gammal is", 3.723196185
g =t >2t+1-21
ff :=sin(2 t +1 -2 1) sin(2 t + 1 + 2 I)
dff := 2 cos(2t +1-21) sin(2t +1 + 2 1)

+2sin(2t+1-21I)cos(2t+1+2T1I)

2 1/2

1+ (1 - tanh(4) ) Pi _Z2~

cp :=-1/2 + I - 1/2 I arctanh(-————---————————————- ) + - ,
tanh (4) 2
2 1/2
-1 + (1 - tanh(4) ) Pi _Z2~
-1/2 + I + 1/2 I arctanh(-——--———————=—————————- )+ -
tanh(4) 2

cps := [0., 0.2853981635, 1.0]
v2 := 3.723196185, 3.762195691, 3.629604837
"The maximum of |f(z)| on gamma2 is", 3.762195691
"The maximum of [f(z)| on C is", 3.762195691

"LM is", 18.81097846

Therefore M ~ 3.762195691 and L = 3 + 2 = 5 so that LM ~ 18.81097846. Since
4.798962091 < 11.89789231 < 18.81097846

we have shown that inequality (2-6) is satisfied for the curve C.
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3. [Carrier, Krook and Pearson Section 2-2 Exercise 8a] Show that formal, term-by-term
differentiation, or integration, of a power series yields a new power series with the
same radius of convergence.

Term-by-term Differentiation. Let f(z) = > 7 a,2" have radius of convergence R
and g(z) = Yo7, na,z""! have radius of convergence r. Claim R = r.

First show r > R. Let z be such that 0 < |z| < R. Choose w such that |z| < |w| < R.
Then by (1-5) on page 9 we have that the series for f(w) converges absolutely. Thus,

o0
> lanljw™ < 0.
n=0

Now, let & = |z|/|w|. Then 0 < o < 1 and so na™ — 0 as n — co. It follows that na™ is
bounded by some constant A so that na™ < A for all n. Now,

o

> nlanllz|" 7t = Zn|an||w|”a” Z |an[w]"™ < oo

n=1

shows that the series for g(z) converges for any |z| < R. It follows that r > R.
Second show that R < r. Suppose |z| < r. Then by (1-5) on page 9 we have that the
series for g(z) converges absolutely. Thus,

oo

Z nla,||z|" ! < oco.

n=1

Now,

o0 %) 0o
> lanllzl" = laol + 2] D lanll2" ™ < Jaol + [2] D nlanllz]" ™" < co.
n=0 n=1 n=1

shows that the series for f(z) converges for any |z| < r. It follows that R < r.

Term-by-term Integration. Let f(z) = Y~ a,z" have radius of convergence R and
h(z) = Y’y g anz"t! have radius of convergence p. Claim R = p.
First show that R < p. Suppose |z| < R. Then by (1-5) on page 9 we have that the

series for f(z) converges absolutely. Thus,

oo
D anllz|™ < oo
n=0

Now,
oo

1
Z Clan]l2]" T < 2] Z |anl[2]" < oco.

= n=0

shows that the series for h(z) converges for any |z| < R. It follows that R < p.

7
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Second show R > p. Let z be such that 0 < |z| < p. Choose w such that |z| < |w| < p.

Then by (1-5) on page 9 we have that the series for A(w) converges absolutely. Thus,

[e.e]

1
anllw|™" ! < oo.
> |ap||w]

n=0

Now, let o = |z|/|w]|. Let A be the bound so that na™ < A for all n. Now,

) 1 & 1 P )
Z|an||z|n:mzn—ﬂ|an||w|n+l<n+1)an+l §|_Z|Zn+1|an||w|n+1 < 00
n=0 n=0 n=0

shows that the series for f(z) converges for any |z| < p. It follows that R > p.
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4. [Carrier, Krook and Pearson Section 2-2 Exercise 8b] The uniform-convergence prop-
erty of a power series implies that term-by-term integration yields the integral of the
sum function. Show that the integrated sum function is single valued and analytic
within the circle of convergence.

Let R be the radius of convergence of the infinite series defining f and h in part a. Let

n

= 1
_ k _ k41
fn(z) = E ayz and hn(z) = ];:O I

k=0

Suppose € and z are such that || < R and |z] < R. Let I' = {7(¢) : t € [0,¢] } be any path
such that v(0) = z, v(1) = £ and |y(t)| < R for t € [0,1]. Since f,, is a polynomial, it is
analytic. Therefore the path integral along I' is path independent and since h!, = f,, we
obtain

£
/F ful) d¢ = / Fu(O)dC = hn(€) — hn(2)-

Since |y(t)| < R for t € [0, 1] then there is n > 0 such that |y(¢)] < R —n for t € [0,1].
From the results on page 9 we obtain that

(7 (@) = F(7(D)) uniformly in ¢ as n — oc.
Therefore,

lim Ffﬂ(Odgz lim fn( (L)' (t) dt

n—oo n—oo

=/0f(7( ) dt = /f

[ £€1¢ = i (n(9) = 1 (2)) = (€)= ().

Since this equality holds for any I' inside the radius of convergence, the integral is path
independent. Therefore, we may write

3
/ F(C)d¢ = h(€) — h(2)

for any z and £ such that [{] < R and |z| < R where the integral is to be interpreted
as a path integral along along any path from z to £ that lies strictly inside the radius of
convergence. Since h is single valued then the integrated sum function is single valued.

We now claim h is analytic and h'(z) = f(z). Let € > 0. Since f is continuous at z
there is § > 0 so that |( — z| < § implies |f({) — f(z)| < e. Define y(t) = (1 — t) + zt so
that 7/(t) = z — 5. Now, |£ — z| < ¢ implies |fy(t) —z| <o forte [O 1] and therefore

R

/yf ‘ﬁ<Aeﬁ:e

Consequently h'(z) = f(z) for every |z| < R.

It follows that
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5. [Carrier, Krook and Pearson Section 2-2 Exercise 8c| Show that a power series con-
verges to an analytic function within its circle of convergence.

Consider the power series for f(z) defined above with radius of convergence equal to R.
By part a the function g(z) also has radius of convergence equal to R. Since f(z) may
be obtained from g(z) through term by term integration of g(z) we have by part b that
f'(z) = g(z) for every z such that |z| < R. Thus, f is differentiable and therefore analytic
in its circle of convergence.

10
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6. [Carrier, Krook and Pearson Section 2-3 Exercise 1] Use Cauchy’s integral formula to
evaluate the integral around the unit circle |z| = 1 of

sin z In(z + 2) 2% + asinh(z/2)

d t 2.
22+’ 242 7 22 +iz+1 an covs

Let D = {z : |z2] < 1} be the unit disk and I' = JD be its boundary oriented in the
positive (counterclockwise) direction. Since sin z is analytic on D and —i/z is contained
within it, then Cauchy’s formula implies

. L
/ S 2 :_/ SRE  risin(—i/2) = —misin(i/2).
Iy 2 Iy

2z +1 z+1i/2
Since _ _
din z — exp(iz) — gxp(—zz)
2
then
—-1/2) — 1/2 1/2) — —1/2
i
It follows that ]
sin z
= msinh(1/2).
/p22—|—i msinh(1/2)

For the next integral note that, by definition, the principle branch In z of the logarithm
is the inverse of the function

z—exp(z){z+iy:z€Randy € (—m, x|} - C.

Therefore In z is analytic on the domain C\ (—o0, 0] and consequently In z + 2 is analytic

on C\ (—oo, —2]. Tt follows that
Inz+2

z+2

is analytic in an open set containing D. By Cauchy’s theorem we have

/ln(z+2) _0
r Z+2 N

For the next integral note that

exp(z) — exp(—2)
2

sinh z =
Setting ¢ = sinh z and w = exp z yields
2wy = w? — 1. (%)

11



Math 715 Homework 1 Solutions

Completing the square and factoring yields
(w=1)* =9 +1.

We would like to take square roots to solve for w. Recall that the principle branch of the
square root function is defined as

re® — \/fre'/? for 0 € (—m, 7).
This function is analytic on C\ (—0c0,0]. The only time %% + 1 € (—o0,0] is when
Y € i(—o0, —1] or Y € i[1, 00).

Y=Y+ VP2 +1

is analytic on C\ (i(—o0, —1] U i[1, 0)).
From (x) observe that if w < 0 then ¢ € R. However, ¢y € R implies w =
Y + \/¥?+1 > 0, which is a contradiction. Therefore, it can’t happen that w < 0.

Consequently the function
¥ = log(y + /42 1 1)
is analytic on C\ (i(—o0, —1] U i[1,00)). As a result

Therefore the map

asinh(z) = log(z + v/22 + 1)
is an inverse to sinh(z) which is analytic on C\ (i(—o0,—1] Ui[l,00)). In particular
sinh(z/2) is analytic on a neighborhood of the unit disk D.
Note that 22 4+ iz +i = (2 — 21)(2 — 22) where

—i++-1—-4i -1 v—1—4 <
2

2

—j—
21| = and |zo| = ’

Therefore
23 + asinh(z/2)

zZ— 21

is analytic on D. It follows from Cauchy’s formula that

3 inh(z/2 3 inh(zo/2
/z %;asgl (z/ )dz:Zm'Zz + asinh(zy/2)
r =z+twz+ Zo — 21

~ —0.04880 + 1.87621.

For the final integral note that

oS 2
cotz = —
sin z
and that
- 1 - 1
S YRt 2kl ik ok
smz—kz_o( 1) (2k+1)!z —z(l;)( 1) (2k+1)!z )-zsmcz,

where sinc z is defined by the absolutely convergent series in parenthesis shown above.
Since the only zeros of sin z are z = km where k € Z then the only zeros of sinc z are for
z = km where k € Z \ {0}. Tt follows that ££ is analytic on D. Consequently

sinc z

0
/ cot zdz = 27rz'< C,OS ) = 273,
r sinc 0

12
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7. [Carrier, Krook and Pearson Section 2-3 Exercise 2| If ®(z) is analytic in a simply
connected region in which a closed contour C' is drawn, obtain all possible values of

/ ®(¢)
-2
where z is not a point on C' itself.

Let C = 09 be the boundary of an open set and S = Q be a set on which the Green’s
theorem holds. Consider separately two cases. The first where z = 0 and the second where
z # 0. If z =0, the possible values of the integral in question are given by

/(I)(C)_ 27i®’(0) for 0 € Q
c ¢¢ |0 for 0 ¢ Q.

If z # 0, we note that (% — 22 = (¢ — 2)(¢ + z). Therefore, the possible values are

1i®(2)z7 ! — mid®(—2)z7! for z € Qand —z € Q

/ 2(¢) _ mi®(2)z7t for z € Q and —z & Q)
o (% — 22 —mi®(—z)z~ ! for z ¢ Q and —z € Q
0 for z € Q2 and —z & Q.

If one also considers closed contours C' that do not necessarily bound a domain, then
the contours may wind around the singularities multiple times. In this case we obtain the
following possibilities

2mik®’(0) and Tk ®(2)27 ! — wiko®(—2)2 7!

where k, k1, ko € Z.

13
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8. [Carrier, Krook and Pearson Section 2-3 Exercise 3] If n is an integer, positive or
negative, and if C is a closed contour around the origin, use

I
- [ O, 214
e = g [ (2~ 14)
to show that y
4z _ 0 unless n=1.
c Z"

If n <0 then 1/2" is analytic. Therefore, Cauchy’s theorem implies

dz

c Z"

If n > 1, we write f(z) = 1 so that f(®~1)(2) = 0. Then (2-14) implies

1 2mt
—dz = =1(0) = 0.
c 2" ? (n—l)!f (0)

Finally, if n = 1 then

which is non-zero.

14
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9. [Carrier, Krook and Pearson Section 2-3 Exercise 6] Show, that if ®(z) is any function
continuous on C' and if a function f(z) is defined for z include C' by

f(2) = = /C 26) ¢

271 (—=z

then f(z) is analytic inside C. Invent an example to illustrate the fact that, as an
interior point z approaches a boundary point zg, then f(z) need not approach ®(z).

To show that f(z) is analytic, it is enough to show it has a derivative. By definition,

/ BRT f(g)_f(z)
ﬂ@—gyj:j—-

Therefore, it remains to show that this limit exists. Now,

M-J0 L (- )

£—2 £—z 2mi (—¢ (-2
“ cq’“)((c—é)l(c— 5)%
5 2O e )
=5 L2 )
“ i <”§:§>d<'

It follows that

FO-f) 1 [ () L[ 80 (E-2
S Ll sl e (D

Now since ®(() is continuous on C' it’s maximum exists and we may define

M =max{|®()|: (e C}.

Since z ¢ C then
p=dist(z,C) =min{ |z —(|: (€ C} > 0.

Finally, if £ is close enough to z then also £ ¢ C. Consequently,
v =dist(&,C) >0

By assumption C = { y(t) : t € [0,1] } where 7(t) is a differentiable function such that

1
:/\ﬂMﬁ<&
0

15
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Therefore, follows that

L[ a(Q) e-- L ek) || -z |,
o /(;(c—z)?(c—g)‘lglgﬂ/o COErE v(t)—s"”t”dt
%%\g—zmo

as £ — z. Therefore f(z) is analytic at each point inside C.
For an example where f(z) does not approach ®(z) as the interior point z approaches
a boundary point 2y, consider

®(z) = Re(z), z0=1 and C = {exp(it) : t € [-m, 7] }.

Now
®(z) =Re(z) = 1 as z—1

However,

1 f(©) go_ L [T cost ., 1 [T et 4 it

— = — , Ut = — - gettdt
21 Jo (— 2 2mi J_ . et — Pt dmi J_. et —z c
1 -1 1 241
o [ = o [
Ari Joo (—2 Ami Jo (C— 2)C

as z— 1.

2

1<z2+1 1) z 1
z z

16
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10. [Carrier, Krook and Pearson Section 2-3 Exercise 7] A function ®(z) is known to be
continuous throughout a simply connected region and to have the property that

/C@(z)dz ~0

for any closed contour in that region. Show that ®(z) must be analytic in that region.

Let € be the simple region mentioned above. For zy € () fixed, define

where I' = {y(t) : t € [0,1] } is any path that remains inside  and such that v(0) = z
and (1) = £. Claim that F(€) is independent of the path I". Consider two different paths
[y ={(t) :t €[0,1] } such that ~;(0) = zp and ~;(1) =& for i = 1,2. Let

C={c(t):te[0,2]} where c(t) = {z;g)_ ) ggi i E E(i,’l]].

Then C is a closed contour and ¢(t) is pathwise differentiable. It follows that

2
oz/ccb(g)dg:/o ®(c(t))d (t)dt
- / & (1 (0) 7] (£)dt + / D(12(2 — 1)) (— 14(2 — 1)) dt.

Setting s = 2 — t so that ds = —dt yields

2 1
[ #a@=0)(=me-0)it = - [ @(u()ns)ds

Therefore

/F o(Q)dc = [ @),

I's
which shows the integral defining F' does not depend on the choice of path.
Claim F is differentiable on . Let z € ) be fixed. Since 2 is open, there is a > 0
such that B, (z) C Q. Therefore, for £ such that | — z| < «, the straight line path
Do={):tel0,1]} where y5(t) = 2+t —2)

lies entirely within €2. It follows that

F)-F(z) _ 1 ( /jq><<)d<_ /:@@)dg): ! /j@(@dc
17
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Therefore

FE) - F(2)

()

[ @) - o(e))i ey

_’1
-
ng\m%@»—éumm

Given ¢ > 0, since ® is continuous, there exists § > 0 with § < a such that | — z| < 0
implies |®(£) — ®(z)| < e. It follows that

- CID(z)) <e whenever & — 2| < 6.

Therefore the limit exists and F'(z) = ®(z) for every z € . It follows that F' is analytic
and consequently that ® is also analytic.

18



