Existence and Uniqueness of Solutions to ODEs

Consider the initial value problem

$$
\left\{\begin{align*}
y^{\prime} & =f(t, y) \tag{IVP}\\
y(0) & =\mathbf{0}
\end{align*}\right.
$$

where $y \in \mathbf{R}^{n}$ and $f: D \rightarrow \mathbf{R}^{n}$ where $D \subseteq \mathbf{R} \times \mathbf{R}^{n}$ is open and contains (0,0).
Local Existence and Uniqueness Theorem. If f is continuous in the first variable and uniformly Lipschitz in the second, then there exists $h>0$ and a unique function $y \in C^{1}\left([-h, h] ; \mathbf{R}^{n}\right)$ that satisfies (IVP).
Proof. Since f is uniformly Lipschitz in the second variable, there exists $\gamma>0$ such that

$$
\left\|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right\| \leq \gamma\left\|y_{1}-y_{2}\right\|
$$

for all $\left(t, y_{1}\right)$ and $\left(t, y_{2}\right)$ in D. Since D is open and contains $(0, \boldsymbol{0})$, there exists a closed rectangle $[-a, a] \times[-b, b]^{n} \subseteq D$. Define

$$
\begin{gathered}
M=\max \left\{\|f(t, y)\|:(t, y) \in[-a, a] \times[-b, b]^{n}\right\} \\
h=\min \left(\frac{1}{2 \gamma}, \frac{b}{M}, a\right)
\end{gathered}
$$

and

$$
X=\left\{y \in C\left([-h, h] ; \mathbf{R}^{n}\right): y(0)=\mathbf{0} \text { and } \max _{t \in[-h, h]}\|y(t)\| \leq b\right\}
$$

Define $\mathcal{J}: X \rightarrow X$ by

$$
\mathcal{J}(y)(t)=\int_{0}^{t} f(s, y(s)) d s
$$

Claim that \mathcal{J} is well defined and a contraction.
First show \mathcal{J} is well defined. Let $y \in X$. Then $h \leq a$ and $\|y(s)\| \leq b$ for $s \in[-h, h]$ implies that $(s, y(s)) \in D$ for $s \in[-h, h]$. Thus $f(s, y(s))$ is a composition of continuous functions and therefore continuous. Moreover, its integral is also continuous. Therefore $\mathcal{J}(y) \in C\left([-h, h] ; \mathbf{R}^{n}\right)$. Now let $t \in[-h, h]$. Since $\|y(s)\| \leq b$ for all s between 0 and t it follows that $\|f(s, y(s))\| \leq M$ for all s between 0 and t. Therefore

$$
\begin{aligned}
\|\mathcal{J}(y)(t)\| & =\left\|\int_{0}^{t} f(s, y(s)) d s\right\| \leq\left|\int_{0}^{t}\|f(s, y(s))\| d s\right| \\
& \leq\left|\int_{0}^{t} M\right|=|t| M \leq h M \leq b
\end{aligned}
$$

Hence $\|\mathcal{J}(t)(t)\| \leq b$ for all $t \in[-h, h]$. Finally noting that

$$
\mathcal{J}(y)(0)=\int_{0}^{0} f(s, y(s)) d s=\mathbf{0}
$$

we conclude that $\mathcal{J}(y) \in X$.
Next show that \mathcal{J} is a contraction. Let $y_{1}, y_{2} \in X$ and $t \in[-h, h]$. Then

$$
\begin{aligned}
\left\|\mathcal{J}\left(y_{1}\right)(t)-\mathcal{J}\left(y_{2}\right)(t)\right\| & =\left\|\int_{0}^{t}\left(f\left(s, y_{1}(s)\right)-f\left(s, y_{2}(s)\right)\right) d s\right\| \\
& \leq\left|\int_{0}^{t}\left\|f\left(s, y_{1}(s)\right)-f\left(s, y_{2}(s)\right)\right\| d s\right| \\
& \leq \gamma\left|\int_{0}^{t}\left\|y_{1}(s)-y_{2}(s)\right\| d s\right| \\
& \leq \gamma h \max _{s \in[-h, h]}\left\|y_{1}(s)-y_{2}(s)\right\| \\
& \leq \frac{1}{2} \max _{s \in[-h, h]}\left\|y_{1}(s)-y_{2}(s)\right\| .
\end{aligned}
$$

Therefore

$$
\max _{t \in[-h, h]}\left\|\mathcal{J}\left(y_{1}\right)(t)-\mathcal{J}\left(y_{2}\right)(t)\right\| \leq \frac{1}{2} \max _{s \in[-h, h]}\left\|y_{1}(s)-y_{2}(s)\right\|
$$

and so \mathcal{J} is a contraction with constant $k=1 / 2$.
Since X is a closed subset of the Banach space $C\left([-h, h] ; \mathbf{R}^{n}\right)$ and $\mathcal{J}: X \rightarrow X$ is a contraction, then taking $y_{0}=0$ and $y_{n+1}=\mathcal{J}\left(y_{n}\right)$ we obtain by the contraction mapping theorem that y_{n} converges to the unique fixed point $y \in X$ such that $\mathcal{J}(y)=y$. The fixed point y is continuous since $X \subseteq C\left([-h, h], \mathbf{R}^{n}\right)$. Hence $f(s, y(s))$ is continuous. The fundamental theorem of calculus then yields that $\mathcal{J}(y)$ is differentiable. Hence y is differentiable. In particular,

$$
\frac{d y(t)}{d t}=\frac{d \mathcal{J}(y)(t)}{d t}=\frac{d}{d t} \int_{0}^{t} f(s, y(s)) d s=f(t, y(t))
$$

Therefore $y^{\prime}=f(t, y)$. Moreover $y(0)=\mathbf{0}$ and so y satisfies (IVP). Therefore solutions to the initial value problem (IVP) exist.

To see solutions are unique note that any solution of (IVP) is a fixed point of $y=\mathcal{J}(y)$. Since there is only one unique fixed point of \mathcal{J}, then we have that there is only one solution to (IVP). Hence, solutions to (IVP) are unique on the interval $[-h, h]$.

