
Existence and Uniqueness of Solutions to ODEs

Consider the initial value problem

{

y′ = f(t, y)

y(0) = 0.
(IVP)

where y ∈ Rn and f : D → Rn where D ⊆ R × Rn is open and contains (0,0).

Local Existence and Uniqueness Theorem. If f is continuous in the first variable

and uniformly Lipschitz in the second, then there exists h > 0 and a unique function

y ∈ C1([−h, h];Rn) that satisfies (IVP).

Proof. Since f is uniformly Lipschitz in the second variable, there exists γ > 0 such that

‖f(t, y1) − f(t, y2)‖ ≤ γ‖y1 − y2‖

for all (t, y1) and (t, y2) in D. Since D is open and contains (0,0), there exists a closed
rectangle [−a, a] × [−b, b]n ⊆ D. Define

M = max
{

‖f(t, y)‖ : (t, y) ∈ [−a, a] × [−b, b]n
}

,

h = min
( 1

2γ
,

b

M
, a

)

and
X =

{

y ∈ C([−h, h];Rn) : y(0) = 0 and max
t∈[−h,h]

‖y(t)‖ ≤ b
}

.

Define J : X → X by

J (y)(t) =

∫ t

0

f(s, y(s))ds

Claim that J is well defined and a contraction.
First show J is well defined. Let y ∈ X. Then h ≤ a and ‖y(s)‖ ≤ b for s ∈ [−h, h]

implies that (s, y(s)) ∈ D for s ∈ [−h, h]. Thus f(s, y(s)) is a composition of continuous
functions and therefore continuous. Moreover, its integral is also continuous. Therefore
J (y) ∈ C([−h, h];Rn). Now let t ∈ [−h, h]. Since ‖y(s)‖ ≤ b for all s between 0 and t it
follows that ‖f(s, y(s))‖ ≤ M for all s between 0 and t. Therefore
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∥

∥
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∥

∥
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0

‖f(s, y(s))‖ds
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≤
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0

M
∣

∣

∣
= |t|M ≤ hM ≤ b.

Hence ‖J (t)(t)‖ ≤ b for all t ∈ [−h, h]. Finally noting that

J (y)(0) =

∫ 0

0

f(s, y(s))ds = 0



we conclude that J (y) ∈ X.
Next show that J is a contraction. Let y1, y2 ∈ X and t ∈ [−h, h]. Then

‖J (y1)(t) − J (y2)(t)‖ =
∥

∥

∥

∫ t

0

(

f(s, y1(s)) − f(s, y2(s))
)

ds
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∥
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≤
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0

∥

∥y1(s) − y2(s)
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∥ds
∣

∣

∣

≤ γh max
s∈[−h,h]

‖y1(s) − y2(s)‖

≤
1

2
max

s∈[−h,h]
‖y1(s) − y2(s)‖.

Therefore

max
t∈[−h,h]

‖J (y1)(t) − J (y2)(t)‖ ≤
1

2
max

s∈[−h,h]
‖y1(s) − y2(s)‖

and so J is a contraction with constant k = 1/2.
Since X is a closed subset of the Banach space C([−h, h];Rn) and J : X → X is a

contraction, then taking y0 = 0 and yn+1 = J (yn) we obtain by the contraction mapping
theorem that yn converges to the unique fixed point y ∈ X such that J (y) = y. The
fixed point y is continuous since X ⊆ C([−h, h],Rn). Hence f(s, y(s)) is continuous.
The fundamental theorem of calculus then yields that J (y) is differentiable. Hence y is
differentiable. In particular,

dy(t)

dt
=

dJ (y)(t)

dt
=

d

dt

∫ t

0

f(s, y(s))ds = f(t, y(t)).

Therefore y′ = f(t, y). Moreover y(0) = 0 and so y satisfies (IVP). Therefore solutions to
the initial value problem (IVP) exist.

To see solutions are unique note that any solution of (IVP) is a fixed point of y = J (y).
Since there is only one unique fixed point of J , then we have that there is only one solution
to (IVP). Hence, solutions to (IVP) are unique on the interval [−h, h].


