1. [Walnut Exercise 2.26] Show that if
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Lemma. If lim b, =0, then lim — > by = 0.
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Suppose € > 0. Since b,, — 0 there is Ny large enough such that n > Ny implies |b,| < €/2.
Define M = chvil |bi| and choose N > max(Ny,2M /€). Then for n > N we have
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This finishes the proof of the lemma.

Define b,, = a,, — a. Then b,, — 0 and it follows from the lemma that
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2. [Walnut Exercise 2.39] Given

k n—1
. 1
Dy(z) = Z eZrimz/a and F,(x)=— Z Dy (z),
m=—k " k=0
prove that
Fo(z) = 1 <siT1(7rnm/a)>2.
n \ sin(rz/a)
Let w = €2>*/¢, Then .
N S N,
Dk = _Z_ w o = w—1

and therefore

1Skt — kgt gl — 2y
Fn=— Z - 2
n w—1 n(w —1)
Let § = mx/a. Then w = **% and we have the identities
w® 4+ w Y = 621'049 + €—2ia9

w® —w™ = 210 _ o200 — 9iqin 206,

= 2cos2al

It follows that

b wt +w™ —2w W' +w =2 2cos2nf —2 1 —cos2nf
n = n(w —1)2 (w2 —w=1/2)2 T p(2isin6)?2  2nsin?6

Applying the half-angle formula 1 — cos 2nf = 2sin® né finishes the proof.



It is sometimes useful to use a program like Maple to perform all or part of an algebraic
manipulation in order to avoid errors when the calculations become lengthy and tedious.
The following Maple script shows how to sum the geometric series needed for the solution
to the previous problem.

1 restart;

2 Dk:=Sum(w’"m,m=-k. .k):

3 Fn:=1/n*Sum(Dk,k=0..n-1):

4 Dk=simplify(eval (subs(Sum=sum,Dk)));
5 Fn=simplify(eval (subs(Sum=sum,Fn)));

The resulting output is
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3. [Walnut 2.42] Prove that if f(z) is continuous at x = a, then there is a § > 0 and a
number M > 0 such that |f(z)| < M for all x such that |x — a| <.

Let e = 1. By hypothesis there is d; > 0 such that |z — a| < §; implies |f(z) — f(a)| < 1.
Choose M =1+ |f(a)| and § = §1/2. Then |z — a| < § implies |x — a| < §; and

[f (@) < [f(x) = fla) + |f(a)] <1+ [f(a)| = M.



4. [Walnut 2.60] Prove that if g, (x) is an orthonormal system on an interval I and if a,,
where n = 1,..., N is any finite sequence of numbers, then

| Zangn Z anf?

Since g, () is an orthonormal system we have that

<gn(x),gm(33)> _ {1 fornz'm,

0 otherwise.

Also note that the paring (-,-) is linear in the first variable and conjugate linear in the
second variable so that (af, g) = «(f, g) and (f,ag) = @(f, g). Therefore,

2 <Zang”’ Z amgm> - Z Z a am<9n79m =

n=1m=1
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5. [Walnut 2.61] Prove that if g, () is any system of L? functions, then span{g,} is a
linear space. That is, it is closed under the formation of linear combinations.

We need to show that span{g,} is closed under addition and scalar multiplication. By
definition

span{g,} = { Zakgk :n € N and a; € C }
k=1
Closed under Addition. Let f,g € span{g,}. Then there is n,m € N and ay, b, € C

such that . .
f=) arge and  g=> bg
k=1 k=1

Define N = max(n, m) and

ak for k > m,
ck:{bk for k > n,
ar + b otherwise.
Then
N
f+9=>_ crgr € span{gy}
k=1

so span{g, } is closed under addition.

Closed under Scalar Multiplication. Let f € span{g,} and A € C. Then there is
n € N and a; € C such that
F=_ agr.
k=1

Define ¢, = Aay. Then
A = ckg € span{gn}

k=1

so span{g, } is closed under scalar multiplication.



6. [Carrier, Krook and Pearson Section 1-5 Exercise 12| Verify that a suitably defined

branch of
z+1
=in (s )
7@ =t (542
is single valued in the z plane outside of a line joining the points z = 1 and z = —1.

Show, however, that if one enters another sheet of the Riemann surface by crossing
this line, there will be a branch point at z = 13/12.

The function f(z) can be written as a composition of the following functions.

1
%Z—Fl, 2z — /7, z—=>5+4 2z, z — Inz.
z j—
Of these functions only y/z and In z are multi-valued and require the choice of a branch.
For 1/~ choose the branch given by

re'? — \/ret?/? where r > 0 and 6 € (—m, 7]

which maps C\ (—o0, 0] onto the half plane { z+iy : x > 0 and y € R }. Note that for real
numbers x > 0 this branch corresponds to the usual positive square root function denoted
v/z. For In z choose the principle branch, denoted as In, z, given by

re? — Inr 4+ i where r > 0 and 0 € (—m, 7]

which maps C\ (—o0, 0] onto the horizontal strip {z +iy: 2z € R and y € (—m,7) }.

To show that f(z) is single valued it is enough to check that the composition of
functions with the branches chosen above is well defined for every point in C\ [—1,1].
This is illustrated in Figure 1 on the next page.

Notice first that the map z — (2 +1)/(z — 1) maps the real line into the real line and
in particular it maps the interval [—1,1) into the ray (—oo,0]. Now,

1 1
2t , w(z—1)=z+1, wz—z=w+ 1, z:ﬂ
z—1 w—1

w =

shows z — (2 +1)/(z — 1) is a bijection between C \ {1} and C \ {1}. This bijection
maps C \ [-1,1] onto C\ (—o0,0]. Now z — /2 above maps C \ (—o0,0] onto the right
half plane which in turn is shifted to the left 5 units by z — z 4+ 5. The resulting set
{z+iy : x > 5andy € R} does not contain the branch line (—o0,0] of the In, so
z — In,, 2 is well defined on this set. It follows that f(z) is well defined and therefore single
valued for this choice of branches.

We now study the Riemann sheet which is entered upon crossing the line [—1,1].
Crossing the line [—1,1] in the domain of f(z) corresponds to crossing the branch line
(—00, 0] for the square root function. In this way we enter the negative branch of square
root which shall be denoted as —/z. Now, z — —4/z maps C \ (—oc, 0] onto the left half
plane {zx + iy : x < 0and y € R} which z — 5+ z maps onto {z + iy : x < 5and y €
R, }. However, In, is not well defined on this set because it contains (—oo,0]. Therefore,
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additional points need to be removed from the Riemann sheet of this branch for f(z) to
be single valued.

To determine the points which need to be removed, take inverse images to find out
which points map onto the line (—oo, 0] under the mapping

/ 1
A Zt .
z—1

Since z — 5+ z maps (—o0, —5] onto (—o0, 0], z — —/z maps [25, 00) onto (—oo, —5] and
z = (z+4+1)/(2 — 1) maps [13/12,00) onto [25,00) we discover that the points [13/12, c0)
must be removed from the Riemann sheet so that this branch of f(z) is well defined. In
particular there is a branch point at 13/12 in this sheet of the Riemann surface. The
composition of functions showing that this branch of f(z) is well defined and single valued
is illustrated in Figure 2.




Figure 1. The following cartoon shows that the branches
for the positive square root y/z and principal logarithm In,, z
chosen above result in a well-defined single-valued function f(z)
on the on the Riemann sheet C\ [-1,1].
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Figure 2. The following cartoon shows the branch of f(z)
entered by crossing the line [—1,1] is well defined and single
valued on the Riemann sheet C\ ([-1,1] U [13/12,00)). Note
that the branch point at 13/12 is required so In,, 2 is well defined
in the final composition.
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7. [Carrier, Krook and Pearson Section 2-1 Exercise 1] Show that no purely real function
can be analytic, unless it is a constant.

Consider a function f(z) = u(z,y) + iv(z,y) where z = z + iy and where u and v are real
functions. For f to be purely real means v(z,y) = 0. For f to be analytic means u, = v,
and u, = —v, hold at every point in the complex plane. Therefore, if f is a purely-real
analytic function, it follows that u, = 0 and u, = 0. Now u, = 0 implies for y, fixed that
the function x — u(x,yp) is constant and similarly u, = 0 implies for z fixed that the
function y — u(zg,y) is constant.

Let ¢ = u(zg, yo). Consider any point x1+iy; in the complex plane. Since z — u(x, yo)
is constant holding vy fixed, then u(z1,yo) = u(xo,y0) = ¢. Since y — u(z1,y) is constant
holding 7 fixed, then u(x1,y1) = u(x1,y0) = c. It follows that u is identically equal to ¢
throughout the entire complex plane. Therefore f is constant.
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8. [Carrier, Krook and Pearson Section 2-2 Exercise 1] Evaluate

3—2i
/ sin z dz
144

in two ways. First by choosing any path between the two end points and using real

integrals as in

/Cf(z)dz:/C(udx—vdy)+i/(udy+vdx) (2-5)

C

and second by use of an indefinite integral. Show that the inequality

’/Cf(z) dz

where |f| < M and L is the length of C is satisfied.

The trigonometric identities

< /C 1£(2)|ldz] < ML (2:6)

sin z = sin(x 4 iy) = sinz cosh y + i cos x sinh y

cos z = cos(x + iy) = cosx coshy — isinz sinh y

will be used in this exercise.
First, consider the path C' given by

1+1i

C

3-2
Lo

which may be written as the sum of the paths [y1] and [y2] where v;(¢) = 14 i(1 — 3t) and
~v2(t) = (1 + 2t) — 24. Since

/ sinzdz = / (sinx cosh y dx — cos z sinhy dy) + i / (sin x cosh y dy + cos z sinh y dzx),
c c c
compute the real path integrals
—2
/ (sinx coshy dx — cos z sinhy dy) = — / cos 1sinhydy = —cos1(cosh2 — cosh 1)
[71] 1
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3
/ (sinx cosh y dx — cos z sinhy dy) = / sinz cosh 2dz = (cos 1 — cos 3) cosh 2
[v2] 1
—2
i / (sinz coshy dy + cos xsinhydz) =i / sin 1 coshy dy = —isin 1(sinh 2 4 sinh 1)
[v1] 1

3
i / (sinz coshy dy + cos zsinhy dz) = —i / cosxsinh2dzx = i(sin1 — sin 3) sinh 2
[v2] 1
and add them to obtain

/ sin zdz = cos1cosh 1 — cos 3 cosh 2 —i(sinlsinhl ~|—sinSSinh2).
c

This finishes the computation using real path integrals.
Second, compute using an indefinite integral to obtain

3-2;
/ sinzdz = — cos(3 — 2i) + cos(1 + 1)
144

= —cos3cosh2 —¢sin3sinh2 + coslcoshl — ¢sin1sinh 1.

This answer is the same as the answer found using the path integrals.
We now show inequality (2-6) is satisfied. The term of the left hand side is

‘/ sinzdz’ = | cos(1 4 i) — cos(3 — 24)|
c

~ |4.558275530 — 1.5007202761| ~ 4.798962091.

/ | sin 2| ]
C

use numerical techniques. The Maple script

To approximate the integral

# Compute integral [f(z)||dz| along the path gammal+gamma?2
restart;

f:=z->sin(z);

gammal:=t->1+I*(1-3%t);

gamma?2:=t->(1+2xt)-2x1;
I1:=Integrate(abs(f (gammal (t))*diff (gammal(t),t)),t=0..1);
Fl:=evalf(I1);

I2:=Integrate(abs(f (gamma2(t))*diff (gamma2(t),t)),t=0..1);
F2:=evalf (I2);

print ("The integral |f(z)|ldz| is approximately", F1+F2);

© o N O O s W N

"
(=)

gives the output

f := 2z -> sin(z)
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gammal :=t -> 1 + (1 - 3¢t) I

gamma2 =t > 2t +1-21

1
/
|
I1 := | 3| sin(1 + (1 -31¢t) I) | dt
|
/
0
F1 := 4.468016320
1
/
|
I2 := | 2 | sin(2 t +1-21I) | dt
|
/
0

F2 := 7.429875986

"The integral |f(z)||dz| is approximately", 11.89789231

Therefore
/ | sin z||dz| ~ 11.89789231.
C

Finally we compute M using Maple

1 # Find the maximum value of [f(z)| on gammal and gamma2
2 restart;
_EnvAllSolutions:=true;

5 f:=z->sin(z);

6 g:=t=>1+I*(1-3%t);

7 £f:=f(g(t))*conjugate(f(g(t))) assuming t::real;
s dff:=diff (ff,t);

9 cp:=solve(dff=0,t);

10 k:=0;

11 for j from 1 to nops([cpl)

12 do

13 for i from -3 to 3

14 do

15 c:=evalf (subs(_Z1=i,cp[jl1));

16 if (abs(Im(c))<0.00001 and Re(c)<1 and Re(c)>0)
17 then

18 k:=k+1;

14



19 cpn (k] :=abs(c);

20 end

21 end

22 end;

23 cps:=[0.0,seq(cpn[n],n=1..k),1.0];

24 vl:=seq(abs(f(g(cpsnl]))),n=1. .nops(cps));

25 print ("The maximum of [f(z)| on gammal is",max(v1l));
26

27 g:=t=>(1+2%t)-2%I;

2s £f:=f(g(t))*conjugate(f(g(t))) assuming t::real;
29 dff :=diff (ff,t);

30 cp:=solve(dff=0,t);

31 k:=0;

s2 for j from 1 to nops([cpl)

33 do

34 for i from -3 to 3

35 do

36 c:=evalf (subs(_Z2=1i,cp[jl));
37 if (abs(Im(c))<0.00001 and Re(c)<1 and Re(c)>0)
38 then

39 k:=k+1;

10 cpn[k] :=abs(c) ;

41 end

42 end

43 end;

14 cps:=[0.0,seq(cpn[n],n=1..%k),1.0];

15 v2:=seq(abs(f(g(cps[n]))),n=1..nops(cps));

46 print ("The maximum of [f(z)| on gamma2 is",max(v2));
47

48 print ("The maximum of [f(z)| on C is", max(vl,v2));
49 print ("LM is",5*max(v1,v2));

with the results

_EnvAllSolutions := true
f := z -> sin(z)
g:=t-—>1+0-31t)1I
ff :=sin(1 + (1 - 3 t) I) sin(1 - (1 - 3 t) I)
dff := -3 I cos(1 + (1 -3 t) I) sin(1 - (1 - 3 t) I)
+31Isin(1+ (1 -31%) I) cos(1l-(1-31t)I)

| -1 + (1 + tan(2) )

/ 2 1/2 \
|
cp := -1/3 I |1 + I - arctan(-——————-————————————~ ) - Pi _Z17|



\ tan(2) /

/ 2 1/2 \
| 1+ (1 + tan(2) ) |
-1/3 1 |1 + I + arctan(-———-—=—=—===—=———————- ) - Pi _Z17|
\ tan(2) /
k=0

cps := [0., 0.3333333333, 1.0]
vl := 1.445396576, 0.8414709848, 3.723196185
"The maximum of |f(z)| on gammal is", 3.723196185
gi=t—>2t+1-21
ff :=sin(2t +1-21I) sin(2t +1+ 2 1)
dff := 2 cos(2t +1-21) sin(2t +1 + 2 1)

+2sin(2t +1-21I)cos(2t+1+2T1)

2 1/2
1+ (1 - tanh(4) ) Pi _Z2~7
cp := -1/2 + I - 1/2 T arctanh(-—————---——-—————————~ ) + s
tanh(4) 2
2 1/2
-1 + (1 - tanh(4) ) Pi _Z2~7
-1/2 + I + 1/2 I arctanh(-——-———==———————————— )+
tanh(4) 2

cps := [0., 0.2853981635, 1.0]
v2 := 3.723196185, 3.762195691, 3.629604837
"The maximum of |f(z)| on gamma2 is", 3.762195691
"The maximum of |f(z)| on C is", 3.762195691
"LM is", 18.81097846
Therefore M ~ 3.762195691 and L = 3 + 2 = 5 so that LM =~ 18.81097846. Since

4.798962091 < 11.89789231 < 18.81097846

we have shown that inequality (2-6) is satisfied for the curve C.
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9. [Carrier, Krook and Pearson Section 2-2 Exercise 8a] Show that formal, term-by-term
differentiation, or integration, of a power series yields a new power series with the
same radius of convergence.

Term-by-term Differentiation. Let f(z) = > 7 a,2" have radius of convergence R
and g(z) = Yo7, na,z""! have radius of convergence r. Claim R = r.

First show r > R. Let z be such that 0 < |z| < R. Choose w such that |z| < |w| < R.
Then by (1-5) on page 9 we have that the series for f(w) converges absolutely. Thus,

o0
> lanljw™ < 0.
n=0

Now, let @ = |z|/|w]. Then 0 < a < 1 and so na™ — 0 as n — co. It follows that na™ is
bounded by some constant A so that na™ < A for all n. Now,

(%) 1 0o A_<x
Y onlan|lz" = =Y nfan|lw]"a™ < =3 ag||w]" < oo
n=1 |z|n:1 |Z|n:1

shows that the series for g(z) converges for any |z| < R. It follows that r > R.
Second show that R < r. Suppose |z| < r. Then by (1-5) on page 9 we have that the
series for g(z) converges absolutely. Thus,

oo

Z nlan||z|" ! < oo.

n=1

Now,

oo oo o0

D lanllzl" = laol + 121 3 lan/|2" " < lao| + |21 3 nlan|"~" < oo.

n=0 n=1 n=1
shows that the series for f(z) converges for any |z| < r. It follows that R < r.
Term-by-term Integration. Let f(z) = Y~ a,z" have radius of convergence R and

hz) =32, n+r1anz”Jrl have radius of convergence p. Claim R = p.

First show that R < p. Suppose |z| < R. Then by (1-5) on page 9 we have that the
series for f(z) converges absolutely. Thus,

o
D anllz|™ < oo
n=0

Now,
oo o0
1
> —. 1\an!|21”+1 <21 ) lanllz|™ < oo.
n=0 n=0

shows that the series for h(z) converges for any |z| < R. It follows that R < p.
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Second show R > p. Let z be such that 0 < |z| < p. Choose w such that |z| < |w| < p.
Then by (1-5) on page 9 we have that the series for h(w) converges absolutely. Thus,

oo

1
> |ap||w]" T < 0.

n=0

Now, let o = |z|/|w]|. Let A be the bound so that na™ < A for all n. Now,

oo 1 & 1 P )
Z |an||2|” — m Z n—+1|an||w|n+1(n+ 1)an+1 < m Z — |an||w|n+1 < 00
n=0 n=0 n=0

shows that the series for f(z) converges for any |z| < p. It follows that R > p.
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10. [Carrier, Krook and Pearson Section 2-2 Exercise 8b] The uniform-convergence prop-
erty of a power series implies that term-by-term integration yields the integral of the
sum function. Show that the integrated sum function is single valued and analytic
within the circle of convergence.

Let R be the radius of convergence of the infinite series defining f and h in part a. Let

n

<
fo(2) = Z apz” and hn(z) = kZ:O . 1ak2k+1.

k=0

Suppose § and z are such that [¢| < R and |z| < R. Let [y] be any path such that v(0) =
v(1) = € and |y(t)] < R for t € [0,1]. Since f, is a polynomial, it is analytic. Therefore
the path integral along [y] is path independent and since h], = f,, we obtain

13
(m@mczjin@wx=hmo—h4@-
[v] z

Since |y(t)| < R for t € [0, 1] then there is n > 0 such that |y(¢)] < R —n for ¢t € [0,1].
From the results on page 9 we obtain that

fn (v(t)) — f(y(t)) uniformly in ¢ as n — oo.

Therefore,

n— oo n— oo

lim []fn(g) d¢ = lim fn( ()) ()dt

- / fo@ @y de = [ Q) dc.

It follows that
/ F(Q)dC = Tim (hn(€) — hu(2)) = h(€) — h(2).

[] nreo

Since this equality holds for any [y] inside the radius of convergence, the integral is path
independent. Therefore, we may write

3
/ F(O)d¢ = h(€) — h(z)

for any z and £ such that |{|] < R and |z|] < R where the integral is to be interpreted
as a path integral along along any path from z to £ that lies strictly inside the radius of
convergence. Since h is single valued then the integrated sum function is single valued.

We now claim h is analytic and h'(z) = f(z). Let € > 0. Since f is continuous at z
there is 6 > 0 so that |( — z| < ¢ implies |f(¢) — f(z)] < €. Define v(t) = &(1 —t) + 2t so
that v/(t) = z — 5. Now, |€ — 2| < ¢ implies |’y( )—z| <dforte [O 1] and therefore

h(€) = h(z) ‘_‘ ] dc‘—)/ fiv 0 Iy ar

£~
/}f |dt</oedt—e.

Consequently h'(z) = f(z) for every |z| < R.
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11. [Carrier, Krook and Pearson Section 2-2 Exercise 8c| Show that a power series con-
verges to an analytic function within its circle of convergence.

Consider the power series for f(z) defined above with radius of convergence equal to R.
By part a the function g(z) also has radius of convergence equal to R. Since f(z) may
be obtained from g(z) through term by term integration of g(z) we have by part b that
f'(z) = g(z) for every z such that |z| < R. Thus, f is differentiable and therefore analytic
in its circle of convergence.
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