Math 761 Additional Problems for Homework 2

1. Explicitly compute the 36 entries of the matrix \mathbf{W}_{6} corresponding to the discrete Fourier transform $\hat{x}=\mathbf{W}_{6} x$ where \hat{x} and x are vectors of length 6 given by

$$
\hat{x}=\left[\begin{array}{c}
\hat{x}_{0} \\
\hat{x}_{1} \\
\hat{x}_{2} \\
\vdots \\
\hat{x}_{5}
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{5}
\end{array}\right] \quad \text { and } \quad \hat{x}_{n}=\sum_{j=0}^{5} x_{j} e^{-i 2 \pi j n / 6} .
$$

2. Show that \mathbf{W}_{6} can be factored as

$$
\mathbf{W}_{6}=\left[\begin{array}{cc}
I_{3} & \Omega_{3} \\
I_{3} & -\Omega_{3}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{W}_{3} & 0 \\
0 & \mathbf{W}_{3}
\end{array}\right] P_{6}
$$

where I_{3} is the identity matrix, Ω_{3} is diagonal, \mathbf{W}_{3} is the matrix corresponding to the discrete Fourier transform of length 3 and P_{6} is a permutation matrix. Explicitly write out $\mathbf{W}_{3}, \Omega_{3}$ and P_{6}.
3. Show that \mathbf{W}_{6} can be factored as

$$
\mathbf{W}_{6}=\left[\begin{array}{ccc}
I_{2} & \mathrm{X}_{2} & \Psi_{2} \\
I_{2} & c \mathrm{X}_{2} & c^{2} \Psi_{2} \\
I_{2} & c^{2} \mathrm{X}_{2} & c \Psi_{2}
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{W}_{2} & 0 & 0 \\
0 & \mathbf{W}_{2} & 0 \\
0 & 0 & \mathbf{W}_{2}
\end{array}\right] Q_{6}
$$

where I_{2} is the identity matrix, X_{2} and Ψ_{2} are diagonal, c is a complex constant, \mathbf{W}_{2} is the matrix corresponding to the discrete Fourier transform of length 2 and Q_{6} is a permutation matrix. Explicitly write out $\mathbf{W}_{2}, X_{2}, \Psi_{2}, c$ and Q_{6}.

