Math 761 Additional Problems for Homework 2

1. Explicitly compute the 36 entries of the matrix \mathbf{W}_6 corresponding to the discrete Fourier transform $\hat{x} = \mathbf{W}_6 x$ where \hat{x} and x are vectors of length 6 given by

$$\hat{x} = \begin{bmatrix} \hat{x}_{0} \\ \hat{x}_{1} \\ \hat{x}_{2} \\ \vdots \\ \hat{x}_{5} \end{bmatrix}, \quad x = \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{5} \end{bmatrix} \quad \text{and} \quad \hat{x}_{n} = \sum_{j=0}^{5} x_{j} e^{-i2\pi j n/6}.$$

2. Show that \mathbf{W}_6 can be factored as

$$\mathbf{W}_{6} = \begin{bmatrix} I_{3} & \Omega_{3} \\ I_{3} & -\Omega_{3} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{3} & 0 \\ 0 & \mathbf{W}_{3} \end{bmatrix} P_{6}$$

where I_3 is the identity matrix, Ω_3 is diagonal, \mathbf{W}_3 is the matrix corresponding to the discrete Fourier transform of length 3 and P_6 is a permutation matrix. Explicitly write out \mathbf{W}_3 , Ω_3 and P_6 .

3. Show that \mathbf{W}_6 can be factored as

$$\mathbf{W}_{6} = \begin{bmatrix} I_{2} & X_{2} & \Psi_{2} \\ I_{2} & cX_{2} & c^{2}\Psi_{2} \\ I_{2} & c^{2}X_{2} & c\Psi_{2} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{2} & 0 & 0 \\ 0 & \mathbf{W}_{2} & 0 \\ 0 & 0 & \mathbf{W}_{2} \end{bmatrix} Q_{6}$$

where I_2 is the identity matrix, X_2 and Ψ_2 are diagonal, c is a complex constant, \mathbf{W}_2 is the matrix corresponding to the discrete Fourier transform of length 2 and Q_6 is a permutation matrix. Explicitly write out \mathbf{W}_2 , X_2 , Ψ_2 , c and Q_6 .