Formulas and Definitions

Approximate Identity. A collection of functions on **R** is an approximate identity on **R** if the following conditions hold.

(a) For every $\tau > 0$ holds $\int_{\mathbf{R}} K_{\tau}(x) dx = 1$.

(b) There exists M > 0 such that for every $\tau > 0$ holds $\int_{\mathbf{R}} |K_{\tau}(x)| dx \leq M$.

(c) For every $0 < \delta < a$ holds $\lim_{\tau \to 0^+} \int_{\delta < |x| < a} |K_{\tau}(x)| dx = 0.$

Binomial Theorem. Let n and k be integers. Then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \qquad \text{where} \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Cauchy's Product. Suppose $\sum_{n=0}^{\infty} a_n$ and $\sum_{m=0}^{\infty} b_n$ are absolutely convergent. Then

$$\left(\sum_{n=0}^{\infty} a_n\right)\left(\sum_{m=0}^{\infty} b_m\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_{n-k}b_k\right).$$

Analytic. A function f(z) is said to have a derivative at the point z if

$$\lim_{\xi \to z} \frac{f(\xi) - f(z)}{\xi - z}$$

exists and has the same value for any mode of approach of ξ to z. If f(z) has a derivative at z_0 and also at each point in some neighborhood of z_0 , then f(z) is analytic at z_0 .

Stokes Theorem. In one dimension Stokes theorem is known as the Fundamental Theorem of Calculus

$$\int_{a}^{b} \left(\frac{df}{dx}\right) dx = f(b) - f(a)$$

and in two dimensions it is frequently called Green's Theorem

$$\int_{\partial\Omega} Pdx + Qdy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \, dy$$

where P and Q are continuously differentiable scalar fields and the boundary $\partial \Omega$ is assumed to be a piecewise smooth Jordan curve oriented in the counterclockwise direction.

1. Fill in the missing blanks in the statements of the following theorems from AnIntroduction to Wavelet Analysis by David Walnut.

Theorem 2.16. (Dirichlet) Suppose that f(x) has period a > 0 and is

Then the sequence of partial sums $S_N(x)$ of the Fourier series of f(x) where

$$S_N(x) = \sum_{n=-N}^{N} c_n e^{2\pi i n x/a} \quad and \quad c_n =$$

converge pointwise to the function $\tilde{f}(x)$, where

Theorem 2.19. (Fejér) Let f(x) be a function with period a > that is

and define for $N \in \mathbf{N}$ the function $\sigma_N(x)$ by

where $S_k(x)$ is defined as in Theorem 2.16. Then $\sigma_N(x)$

to f(x) on \mathbf{R} as $N \to \infty$.

2. Define

$$(f * h)(x) = \int_{-\infty}^{\infty} f(x - t)h(t) dt$$

Prove one of the following.

- (i) There is no integrable function h such that (f * h)(a) = f(a) holds for every function f(x) that is L^{∞} on **R** and continuous at x = a.
- (ii) Let f(x) be L^{∞} on **R** and continuous at the point x = a. Suppose K_{τ} is an approximate identity on **R**. Then $(f * K_{\tau})(a) \to f(a)$ as $\tau \to 0$.

- **3.** Prove one of the following.
 - (i) Let f(z) = u(x, y) + iv(x, y) where z = x + iy and u and v are real functions. Suppose f is differentiable at the point $x_0 + iy_0$. Show that the Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$ hold at this point.
 - (ii) Let f(x) be analytic over some region R of the complex plane and consider any closed simple piecewise smooth Jordan curve C which together with its interior is completely contained in R. Prove Cauchy's theorem $\int_C f(z) dz = 0$.