Math 761 Quiz 1 Version A

Formulas and Definitions

Approximate Identity. A collection of functions on \mathbf{R} is an approximate identity on \mathbf{R} if the following conditions hold.
(a) For every $\tau>0$ holds $\int_{\mathbf{R}} K_{\tau}(x) d x=1$.
(b) There exists $M>0$ such that for every $\tau>0$ holds $\int_{\mathbf{R}}\left|K_{\tau}(x)\right| d x \leq M$.
(c) For every $0<\delta<a$ holds $\lim _{\tau \rightarrow 0^{+}} \int_{\delta<|x|<a}\left|K_{\tau}(x)\right| d x=0$.

Binomial Theorem. Let n and k be integers. Then

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Cauchy's Product. Suppose $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{m=0}^{\infty} b_{n}$ are absolutely convergent. Then

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{m=0}^{\infty} b_{m}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{n-k} b_{k}\right) .
$$

Analytic. A function $f(z)$ is said to have a derivative at the point z if

$$
\lim _{\xi \rightarrow z} \frac{f(\xi)-f(z)}{\xi-z}
$$

exists and has the same value for any mode of approach of ξ to z. If $f(z)$ has a derivative at z_{0} and also at each point in some neighborhood of z_{0}, then $f(z)$ is analytic at z_{0}.

Stokes Theorem. In one dimension Stokes theorem is known as the Fundamental Theorem of Calculus

$$
\int_{a}^{b}\left(\frac{d f}{d x}\right) d x=f(b)-f(a)
$$

and in two dimensions it is frequently called Green's Theorem

$$
\int_{\partial \Omega} P d x+Q d y=\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

where P and Q are continuously differentiable scalar fields and the boundary $\partial \Omega$ is assumed to be a piecewise smooth Jordan curve oriented in the counterclockwise direction.

Math 761 Quiz 1 Version A

1. Fill in the missing blanks in the statements of the following theorems from $A n$ Introduction to Wavelet Analysis by David Walnut.

Theorem 2.16. (Dirichlet) Suppose that $f(x)$ has period $a>0$ and is

Then the sequence of partial sums $S_{N}(x)$ of the Fourier series of $f(x)$ where

$$
S_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{2 \pi i n x / a} \quad \text { and } \quad c_{n}=\square
$$

converge pointwise to the function $\tilde{f}(x)$, where

$$
\tilde{f}(x)=\square .
$$

Theorem 2.19. (Fejér) Let $f(x)$ be a function with period $a>$ that is

and define for $N \in \mathbf{N}$ the function $\sigma_{N}(x)$ by

$$
\sigma_{N}(x)=\square
$$

where $S_{k}(x)$ is defined as in Theorem 2.16. Then $\sigma_{N}(x)$

$$
\text { to } f(x) \text { on } \mathbf{R} \text { as } N \rightarrow \infty .
$$

Math 761 Quiz 1 Version A

2. Define

$$
(f * h)(x)=\int_{-\infty}^{\infty} f(x-t) h(t) d t
$$

Prove one of the following.
(i) There is no integrable function h such that $(f * h)(a)=f(a)$ holds for every function $f(x)$ that is L^{∞} on \mathbf{R} and continuous at $x=a$.
(ii) Let $f(x)$ be L^{∞} on \mathbf{R} and continuous at the point $x=a$. Suppose K_{τ} is an approximate identity on \mathbf{R}. Then $\left(f * K_{\tau}\right)(a) \rightarrow f(a)$ as $\tau \rightarrow 0$.

Math 761 Quiz 1 Version A

3. Prove one of the following.
(i) Let $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$ and u and v are real functions. Suppose f is differentiable at the point $x_{0}+i y_{0}$. Show that the CauchyRiemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ hold at this point.
(ii) Let $f(x)$ be analytic over some region R of the complex plane and consider any closed simple piecewise smooth Jordan curve C which together with its interior is completely contained in R. Prove Cauchy's theorem $\int_{C} f(z) d z=0$.
