Theorem. Suppose $F: \mathbf{R} \rightarrow \mathbf{C}$ is $L^{1}(\mathbf{R})$ integrable and piecewise continuous. Define $g_{t}(x)=f(x-t)$. Then

$$
g_{t} \rightarrow f \quad \text { in } \quad L^{1}(\mathbf{R}) \quad \text { as } \quad t \rightarrow 0
$$

Riemann Integral Way: For simplicity assume f is everywhere continuous. Let $\epsilon>0$ be arbitrary. Since f is $L^{1}(\mathbf{R})$ integrable then $\int_{-\infty}^{\infty}|f(x)| d x=L$ converges as an improper Riemann integral. Therefore, there is N large enough such that

$$
\left|\int_{-N}^{N}\right| f(x)|d x-L|<\frac{\epsilon}{4} \quad \text { or equivalently } \quad \int_{|x|>N}|f(x)| d x<\frac{\epsilon}{4} .
$$

Define $J=[-N-2, N+2]$. Since J is a closed bounded interval, then f is uniformly continuous on J. Therefore, there exists $\delta \in(0,1)$ such that $x, y \in J$ and $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon /(4 N+4)$.
Let $|t|<\delta$. Then $|x| \leq N+1$ implies $x-t \in J$ and $|x|>N+1$ implies $|x-t|>N$. It follows that

$$
\begin{aligned}
\left\|g_{t}-f\right\|_{L^{1}(\mathbf{R})} & =\int_{-\infty}^{\infty}|f(x-t)-f(x)| d x \\
& =\int_{|x| \leq N+1}|f(x-t)-f(x)| d x+\int_{|x|>N+1}|f(x-t)-f(x)| d x \\
& \leq \int_{|x| \leq N+1} \frac{\epsilon}{4 N+4} d x+\int_{|x|>N+1}|f(x-t)| d x+\int_{|x|>N+1}|f(x)| d x \\
& \leq(2 N+2) \frac{\epsilon}{4 N+4}+2 \int_{|x|>N}|f(x)| d x \\
& \leq \frac{\epsilon}{2}+2 \frac{\epsilon}{4}=\epsilon .
\end{aligned}
$$

Therefore $g_{t} \rightarrow f$ in $L^{1}(\mathbf{R})$ as $t \rightarrow 0$.
Lebesgue Integral Way: Let $\epsilon>0$ be arbitrary. Since f may not be bounded, define

$$
f_{k}(x)= \begin{cases}f(x) & \text { for }|f(x)|<k \\ 0 & \text { otherwise }\end{cases}
$$

Since $\left|f_{k}-f\right| \rightarrow 0$ pointwise and $\left|f_{k}-f\right| \leq\left|f_{k}\right|+|f| \leq 2|f|$ where $2|f|$ is integrable on \mathbf{R}, then the dominated convergence theorem implies that

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{R}}\left|f_{k}(x)-f(x)\right| d x \rightarrow \int_{\mathbf{R}} 0 d x=0 \quad \text { as } \quad k \rightarrow \infty
$$

Choose k large enough such that

$$
\int_{\mathbf{R}}\left|f_{k}(x)-f(x)\right| d x<\frac{\epsilon}{6} .
$$

Now

$$
\begin{aligned}
\left\|g_{t}-f\right\|_{L^{1}(\mathbf{R})} & =\int_{\mathbf{R}}|f(x-t)-f(x)| d x \\
& \leq \int_{\mathbf{R}}\left|f(x-t)-f_{k}(x-t)\right| d x+\int_{\mathbf{R}}\left|f_{k}(x-t)-f_{k}(x)\right| d x+\int_{\mathbf{R}}\left|f_{k}(x)-f(x)\right| d x \\
& =2 \int_{\mathbf{R}}\left|f_{k}(x)-f(x)\right| d x+\int_{\mathbf{R}}\left|f_{k}(x-t)-f_{k}(x)\right| d x \\
& \leq \frac{\epsilon}{3}+\int_{\mathbf{R}}\left|f_{k}(x-t)-f_{k}(x)\right| d x
\end{aligned}
$$

We now turn our attention to showing

$$
\int_{\mathbf{R}}\left|f_{k}(x-t)-f_{k}(x)\right| d x \rightarrow 0 \quad \text { as } \quad t \rightarrow 0
$$

Since f was $L^{1}(\mathbf{R})$ integrable, then f_{k} is $L^{1}(\mathbf{R})$ integrable. Choose N large enough such that

$$
\int_{|x|>N}\left|f_{k}(x)\right| d x<\frac{\epsilon}{6}
$$

Since f was piecewise continuous then f_{k} is piecewise continuous. Therefore $\left|f_{k}(x-t)-f_{k}(x)\right| \rightarrow 0$ pointwise as $t \rightarrow 0$ for almost every x. Since $\left|f_{k}(x-t)-f_{k}(x)\right| \leq\left|f_{k}(x-t)\right|+\left|f_{k}(x)\right| \leq 2 k$ where $h(x)=2 k$ is integrable on $[-N-1, N+1]$, then the dominated convergence theorem implies that

$$
\lim _{t \rightarrow 0} \int_{|x| \leq N+1}\left|f_{k}(x-t)-f_{k}(x)\right| d x \rightarrow \int_{|x| \leq N+1} 0 d x=0 \quad \text { as } \quad t \rightarrow 0
$$

Therefore, there is $\delta \in(0,1)$ such that $|t|<\delta$ implies

$$
\int_{|x| \leq N+1}\left|f_{k}(x-t)-f_{k}(x)\right| d x \leq \frac{\epsilon}{3}
$$

It follows that

$$
\begin{aligned}
\int_{\mathbf{R}}\left|f_{k}(x-t)-f_{k}(x)\right| d x & =\int_{|x| \leq N+1}\left|f_{k}(x-t)-f_{k}(x)\right| d x+\int_{|x|>N+1}\left|f_{k}(x-t)-f_{k}(x)\right| d x \\
& \leq \frac{\epsilon}{3}+\int_{|x|>N+1}\left|f_{k}(x-t)\right| d x+\int_{|x|>N+1}\left|f_{k}(x)\right| d x \\
& \leq \frac{\epsilon}{3}+2 \int_{|x|>N}\left|f_{k}(x)\right| d x \leq \frac{\epsilon}{3}+2 \frac{\epsilon}{6}=\frac{2 \epsilon}{3}
\end{aligned}
$$

This inequality together with the inequality at the bottom of the previous page implies that

$$
\left\|g_{t}-f\right\|_{L^{1}(\mathbf{R})} \leq \frac{1}{3}+\frac{2 \epsilon}{3}=\epsilon \quad \text { whenever } \quad|t|<\delta
$$

Therefore $g_{t} \rightarrow f$ in $L^{1}(\mathbf{R})$ as $t \rightarrow 0$.

