Haar Coefficient Decay Rates Case 2. This handout analyzes the decay of the Haar coefficients as $j \rightarrow \infty$ in the case where f has a jump discontinuity.
Theorem 1. If f is bounded on $[0,1]$ then $\left\langle f, h_{j, k}\right\rangle=\mathcal{O}\left(2^{-j / 2}\right)$ as $j \rightarrow \infty$.
Proof. Let $B=\sup \{|f(t)|: t \in[0,1]\}$. Then

$$
\begin{aligned}
\left|\left\langle f, h_{j, k}\right\rangle\right| & =\left|\int_{0}^{1} f(t) h_{j, k}(t) d t\right| \leq \int_{0}^{1}|f(t)|\left|h_{j, k}(t)\right| d t \\
& \leq \int_{k / 2^{j}}^{(k+1) / 2^{j}} B 2^{j / 2} d t=B 2^{j / 2}\left(\frac{k+1}{2^{j}}-\frac{k}{2^{j}}\right)=B 2^{-j / 2}
\end{aligned}
$$

Theorem 2. Suppose f is piecewise differentiable with bounded derivative on $[0,1]$ and has a jump discontinuity at x_{0} where x_{0} is a dyadic irrational. Then the asymptotic bound in Theorem 1 is sharp.
Before proving Theorem 2 we prove the following lemma:
Lemma. If $x_{0} \in[0,1]$ is a dyadic irrational then there is an increasing sequence j_{n} of natural numbers such that

$$
\frac{1}{4}<2^{j_{n}} x_{0} \bmod 1<\frac{1}{2}
$$

Note that $2^{j_{n}} x_{0} \bmod 1$ is equal to $2^{j_{n}} x_{0}-\left\lfloor 2^{j_{n}} x_{0}\right\rfloor$ where $\lfloor x\rfloor$ is the greatest integer less than or equal to x.

Proof. Write x_{0} using the dyadic expansion

$$
x_{0}=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{i}} \quad \text { where } b_{i} \in\{0,1\} \text { for all } i \in \mathbf{N} .
$$

Define

$$
J_{0}=\left\{i: b_{i}=0\right\} \quad \text { and } \quad J_{1}=\left\{i: b_{i}=1\right\}
$$

Claim that both J_{0} and J_{1} are infinite. If not then one must be finite. If J_{1} is finite then there is some N such that $b_{i}=0$ for all $i \geq N$. Then

$$
x_{0}=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{i}}=\sum_{i=1}^{N-1} \frac{b_{i}}{2^{i}}
$$

would be dyadic rational. If J_{0} is finite then there is some N such that $b_{i}=1$ for all $i \geq N$. In this case

$$
x_{0}=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{i}}=\sum_{i=1}^{N-1} \frac{b_{i}}{2^{i}}+\sum_{i=N}^{\infty} \frac{1}{2^{i}}=\sum_{i=1}^{N-1} \frac{b_{i}}{2^{i}}+\frac{1}{2^{N-1}}
$$

would again be dyadic rational. Therefore J_{0} and J_{1} must both be infinite.
Since both J_{0} and J_{1} are infinite, there must be an increasing sequence j_{n} such that

$$
b_{j_{n}+1}=0 \quad \text { and } \quad b_{j_{n}+2}=1 \quad \text { for every } \quad n \in \mathbf{N}
$$

Now

$$
\begin{aligned}
2^{j_{n}} x_{0} \bmod 1 & =\sum_{i=1+j_{n}}^{\infty} 2^{j_{n}} \frac{b_{i}}{2^{i}}=\sum_{i=1}^{\infty} \frac{b_{j_{n}+i}}{2^{i}}=\frac{b_{j_{n}+1}}{2}+\frac{b_{j_{n}+2}}{4}+\sum_{i=3}^{\infty} \frac{b_{j_{n}+i}}{2^{i}} \\
& =\frac{1}{4}+\sum_{i=3}^{\infty} \frac{b_{j_{n}+i}}{2^{i}}=\frac{1}{4}+\frac{1}{4} \sum_{i=1}^{\infty} \frac{b_{j_{n}+i+2}}{2^{i}}=\frac{1}{4}+\frac{1}{4} w .
\end{aligned}
$$

Since x_{0} is dyadic irrational then w is dyadic irrational. Therefore $0<w<1$ and consequently $1 / 4<2^{j_{n}} x_{0} \bmod 1<1 / 2$. This finishes the proof of the Lemma.

Proof of Theorem 2. Since f is piecewise differentiable there are only finitely many points $E \subseteq[0,1]$ where f is not differentiable. Define

$$
\delta=\min \{|x-y|: x, y \in E \text { and } x \neq y\} .
$$

By Lemma 1 there is an increasing sequence j_{n} of natural numbers such that

$$
\frac{1}{4}<2^{j_{n}} x_{0} \bmod 1<\frac{1}{2} \quad \text { for every } \quad n \in \mathbf{N} .
$$

We can assume without loss of generality that $2^{-j_{1}}<\delta$. For each $n \in \mathbf{N}$ choose k_{n} so that

$$
x_{0} \in\left[\frac{k_{n}}{2^{j_{n}}}, \frac{k_{n}+1}{2^{j_{n}}}\right) \quad \text { or equivalently } \quad 2^{j_{n}} x_{0} \in\left[k_{n}, k_{n}+1\right) .
$$

By definition $2^{j_{n}} x_{0} \bmod 1=2^{j_{n}} x_{0}-k_{n}$. Therefore

$$
\frac{1}{4}<2^{j_{n}} x_{0}-k_{n}<\frac{1}{2} \quad \text { or equivalently } \quad x_{0} \in\left(\frac{k_{n}+\frac{1}{4}}{2^{j_{n}}}, \frac{k_{n}+\frac{1}{2}}{2^{j_{n}}}\right) .
$$

For notational convenience, given $n \in \mathbf{N}$ fixed, define

$$
h=h_{j_{n}, k_{n}}, \quad j=j_{n}, \quad a=\frac{k_{n}}{2^{j_{n}}}, \quad b=\frac{k_{n}+1}{2^{j_{n}}} \quad \text { and } \quad c=\frac{a+b}{2} .
$$

Since $b-a=2^{-j} \leq 2^{-j_{1}}<\delta$ then f is differentiable on (a, x_{0}) and (x_{0}, b. For $t \in\left(a, x_{0}\right)$ the Fundamental Theorem of Calculus implies that

$$
f\left(x_{0}^{-}\right)-f(t)=\int_{t}^{x_{0}} f^{\prime}(s) d s
$$

and for $t \in\left(x_{0}, b\right)$ that

$$
f(t)-f\left(x_{0}^{+}\right)=\int_{x_{0}}^{t} f^{\prime}(s) d s
$$

Consequently,

$$
\begin{aligned}
\langle f, h\rangle & =\int_{0}^{1} f(t) h(t) d t=\int_{a}^{b} f(t) h(t) d t \\
& =\int_{a}^{x_{0}}\left(f\left(x_{0}^{-}\right)-\int_{t}^{x_{0}} f^{\prime}(s) d s\right) h(t) d t+\int_{x_{0}}^{b}\left(f\left(x_{0}^{+}\right)+\int_{x_{0}}^{t} f^{\prime}(s) d s\right) h(t) d t \\
& =I+J
\end{aligned}
$$

where

$$
I=\int_{a}^{x_{0}} f\left(x_{0}^{-}\right) h(t) d t+\int_{x_{0}}^{b} f\left(x_{0}^{+}\right) h(t) d t
$$

and

$$
J=-\int_{a}^{x_{0}} \int_{t}^{x_{0}} f^{\prime}(s) h(t) d s d t+\int_{x_{0}}^{b} \int_{x_{0}}^{t} f^{\prime}(s) h(t) d s d t
$$

Estimate I from below. Recall that

$$
h(t)= \begin{cases}2^{j / 2} & \text { for } t \in[a, c) \\ -2^{j / 2} & \text { for } t \in[c, b)\end{cases}
$$

and that $x_{0} \in\left(a+2^{-j-2}, c\right)$. Therefore

$$
\int_{a}^{x_{0}} f\left(x_{0}^{-}\right) h(t) d t=f\left(x_{0}^{-}\right) 2^{j / 2}\left(x_{0}-a\right)
$$

and also

$$
\begin{aligned}
\int_{x_{0}}^{b} f\left(x_{0}^{+}\right) h(t) d t & =\int_{x_{0}}^{c} f\left(x_{0}^{+}\right) 2^{j / 2} d t-\int_{c}^{b} f\left(x_{0}^{+}\right) 2^{j / 2} d t \\
& =f\left(x_{0}^{+}\right) 2^{j / 2}\left(c-x_{0}-b+c\right)=-f\left(x_{0}^{+}\right) 2^{j / 2}\left(x_{0}-a\right)
\end{aligned}
$$

It follows that

$$
I=\left(f\left(x_{0}^{-}\right)-f\left(x_{0}^{+}\right)\right) 2^{j / 2}\left(x_{0}-a\right)
$$

and hence

$$
|I| \geq\left|f\left(x_{0}^{-}\right)-f\left(x_{0}^{+}\right)\right| 2^{j / 2} 2^{-j-2}=\frac{1}{4}\left|f\left(x_{0}^{-}\right)-f\left(x_{0}^{+}\right)\right| 2^{-j / 2} .
$$

Now estimate J from above. Since f^{\prime} is bounded $M=\sup \left\{\left|f^{\prime}(t)\right|: t \in[0,1] \backslash E\right\}$ is finite. It follows that

$$
\begin{aligned}
|J| & \leq \int_{a}^{x_{0}} \int_{t}^{x_{0}} M 2^{j / 2} d s d t+\int_{x_{0}}^{b} \int_{x_{0}}^{t} M 2^{j / 2} d s d t \\
& \leq 2 M 2^{j / 2} \int_{a}^{b} \int_{a}^{b} d s d t=2 M 2^{j / 2}(b-a)^{2}=2 M 2^{-3 j / 2}
\end{aligned}
$$

Therefore, for every $n \in \mathbf{N}$ we have

$$
\left|\left\langle f, h_{j_{n}, k_{n}}\right\rangle\right|=|I+J| \geq|I|-|J| \geq \frac{1}{4}\left|f\left(x_{0}^{-}\right)-f\left(x_{0}^{+}\right)\right| 2^{-j_{n} / 2}-2 M 2^{-3 j_{n} / 2} .
$$

Choose N so large that $n \geq N$ implies

$$
2 M 2^{-3 j_{n} / 2}<\frac{1}{8}\left|f\left(x_{0}^{-}\right)-f\left(x_{0}^{+}\right)\right| 2^{-j_{n} / 2} .
$$

Then, for $n \geq N$ it follows that

$$
\left|\left\langle f, h_{j_{n}, k_{n}}\right\rangle\right| \geq A 2^{-j_{n} / 2} \quad \text { where } \quad A=\frac{1}{8}\left|f\left(x_{0}^{-}\right)-f\left(x_{0}^{+}\right)\right| .
$$

This shows the bound in Theorem 1 is sharp and finishes the proof of Theorem 2.

