Discrete Haar Transform. Let $N=2^{J}$ where $J \in \mathbf{N}$ and suppose that $y_{k} \in \mathbf{R}$ for $k=0,1, \ldots, N-1$ and that

$$
f=\sum_{k=0}^{N-1} y_{k} p_{J, k}
$$

Since $\left\langle f, h_{j, k}\right\rangle=0$ for $j \geq J$ then f may be written as

$$
f=\left\langle f, p_{0,0}\right\rangle p_{0,0}+\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1}\left\langle f, h_{j, k}\right\rangle h_{j, k} .
$$

The following C subroutine computes the coefficents

$$
\left\langle f, p_{0,0}\right\rangle,\left\langle f, h_{0,0}\right\rangle,\left\langle f, h_{1,0}\right\rangle,\left\langle f, h_{1,1}\right\rangle, \ldots,\left\langle f, h_{J-1, N / 2-1}\right\rangle
$$

in terms of y_{k} using $\mathcal{O}(N)$ operations:

```
#include <math.h>
2 void haar1d(double y[],int N){
    double e[N/2],o[N/2];
    int n;
    for(n=N/2;n>=1;n/=2){
        int k;
        for(k=0;k<n;k++){
            e[k]=y[2*k];
            o[k]=y[2*k+1];
        }
        for(k=0;k<n;k++){
            y[k]=(e[k]+o[k])/sqrt(2.0);
            y[k+n]=(e[k]-o[k])/sqrt(2.0);
        }
    }
}
```

Note that to save storage the above subroutine overwrites the array y_{k} in stages.
Proof. Correctness of the code may be seen by examining the contents of y_{k} at the end of each iteration through the loop beginning on line 5 and ending on line 15. The first time through the loop $n=N / 2$ and we have by the splitting theorem that

$$
\begin{aligned}
f=\sum_{k=0}^{N-1} y_{k} p_{J, k} & =\sum_{k=0}^{N / 2-1} e_{k} p_{J, 2 k}+\sum_{k=0}^{N / 2-1} o_{k} p_{J, 2 k+1} \\
& =\sum_{k=0}^{N / 2-1} \frac{e_{k}+o_{k}}{\sqrt{2}} p_{J-1, k}+\sum_{k=0}^{N / 2-1} \frac{e_{k}-o_{k}}{\sqrt{2}} h_{J-1, k} .
\end{aligned}
$$

Overwriting the storage used by y_{k} as

$$
y_{k} \leftarrow \frac{e_{k}+o_{k}}{\sqrt{2}} \quad \text { and } \quad y_{k+N / 2} \leftarrow \frac{e_{k}-o_{k}}{\sqrt{2}} \quad \text { for } \quad k=0,1, \ldots, N / 2-1
$$

yields at the beginning of the second iteration through the loop on line 5 that

$$
n=N / 4 \quad \text { and } \quad f=\sum_{k=0}^{N / 2-1} y_{k} p_{J-1, k}+\sum_{k=N / 2}^{N-1} y_{k} h_{J-1, k-N / 2}
$$

Now leaving the values of y_{k} where $k=N / 2, N / 2+1, \ldots N-1$ untouched, the splitting theorem is again applied to the coeficients y_{k} where $k=0,1, \ldots, N / 2-1$ in the first sum. Thus, at the beginning of the third iteration

$$
n=N / 8 \quad \text { and } \quad f=\sum_{k=0}^{N / 4-1} y_{k} p_{J-2, k}+\sum_{k=N / 4}^{N / 2-1} y_{k} h_{J-2, k-N / 4}+\sum_{k=N / 2}^{N-1} y_{k} h_{J-1, k-N / 2} .
$$

The next iteration applies the splitting theorem to y_{k} where $k=0,1, \ldots, N / 4-1$ and so forth until at the last iteration we have

$$
n=1 \quad \text { and } \quad f=\sum_{k=0}^{2-1} y_{k} p_{1, k}+\sum_{k=2}^{4-3} y_{k} h_{1, k-2}+\cdots+\sum_{k=N / 2}^{N-1} y_{k} h_{J-1, k-N / 2} .
$$

We obtain at exit from the subroutine that

$$
f=y_{0} p_{0,0}+y_{1} h_{0,0}+\sum_{k=2}^{4-3} y_{k} h_{1, k-2}+\cdots+\sum_{k=N / 2}^{N-1} y_{k} h_{J-1, k-N / 2}
$$

The correspondance between coefficents and basis functions may be summarized as

$$
\begin{array}{cccccccccccccc}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} & \cdots & y_{15} & y_{16} & \cdots & \cdots
\end{array} y_{N-1} .
$$

To verify the efficiency of the subroutine let $T(N)$ be how many operations are needed to compute the Haar transform of length N. Then $T(N)=T(N / 2)+\alpha N$ where $T(1)=0$ and $\alpha>0$. Solving the recurrence yields that

$$
\begin{aligned}
T\left(2^{J}\right) & =T\left(2^{J-1}\right)+\alpha 2^{J}=T\left(2^{J-2}\right)+\alpha 2^{J-1}+\alpha 2^{J} \\
& =T(1)+\alpha 2+\alpha 2^{2}+\cdots+\alpha 2^{J}=2 \alpha\left(2^{J}-1\right)=\mathcal{O}(N)
\end{aligned}
$$

