Digital Image Compression and Analysis

Define $y_{n}=\sin x_{n}$ for $n=0,1, \ldots, 511$ where $x_{n}=2 \pi n / 512$. Let Y_{n} be the Haar wavelet transform of y_{n}. Plotting y_{n} and Y_{n} on the same graph we obtain

From the graph it is clear that a large percentage of the Y_{n} are close to zero. A simple compression scheme is to throw away all Y_{n} whose absolute value is less than some $\epsilon>0$. For example, taking $\epsilon=0.05$ and defining

$$
Z_{n}= \begin{cases}0 & \text { for }\left|Y_{n}\right|<\epsilon \\ Y_{n} & \text { otherwise }\end{cases}
$$

throws away 82% of the Haar coefficients in this example. Now let z_{n} be the inverse Haar wavelet transform of Z_{n}. Plotting z_{n} and Z_{n} on the same graph we obtain

Notice that the approximation z_{k} is made up of tiny stair steps with varying size depending on the slope of the function. The orthogonality of the Haar system implies a certain optimality of the stair steps. This project explores the use of this idea in two dimensions to compress and analyze images.

Part 1. Write a program to compute the two-dimensional Haar transform of a matrix or download the source code haar2d. Let $y_{p-1, q-1}$ be the entries of an arbitrary 512×512 matrix and $Y_{m, n}$ be the two-dimensional Haar transform of $y_{m, n}$. Verify numerically that

$$
\sum_{m=0}^{511} \sum_{n=0}^{511}\left|y_{m, n}\right|^{2}=\sum_{m=0}^{511} \sum_{n=0}^{511}\left|Y_{m, n}\right|^{2}
$$

Part 2. The file image1.dat contains a black and white image represented as a 512×512 matrix with entries $y_{p-1, q-1}$ where 0 represents black and 1 represents white. Let $Y_{m, n}$ be the two dimensional Haar transform of $y_{m, n}$ and

$$
Z_{m, n}= \begin{cases}0 & \text { for }\left|Y_{m, n}\right|<\epsilon \\ Y_{m, n} & \text { otherwise }\end{cases}
$$

Write a program to compute the number of Haar coefficients set to zero

$$
\eta=\operatorname{card}\left\{(m, n): Z_{m, n}=0\right\}
$$

and the relative error

$$
E=\sqrt{\sum_{m=0}^{511} \sum_{n=0}^{511}\left|Z_{m, n}-Y_{m, n}\right|^{2} / \sum_{m=0}^{511} \sum_{n=0}^{511}\left|Y_{m, n}\right|^{2}}
$$

for $\epsilon=0.1$.
Part 3. The file image2.dat contains a blurred copy of image1.dat. Let $\tilde{y}_{p-1, q-1}$ be the entries for the matrix corresponding to this image and $\tilde{\eta}$ and \tilde{E} depending on $\tilde{\epsilon}>0$ be defined as above. Find a value of $\tilde{\epsilon}$ such that $\tilde{E} \approx E$. What is $\tilde{\eta}$ for this value of $\tilde{\epsilon}$? Is $\tilde{\eta}$ larger or smaller than the η from part 2? Explain your result.

Part 4. [Extra Credit] Let

$$
c_{j k l}=\int_{0}^{1} \int_{0}^{1} f(x, y) h_{j, k}(x) h_{j, l}(y) d x d y
$$

be the coefficients corresponding the two-dimensional Haar basis functions $h_{j, k}(x) h_{j, l}(y)$ where $k, l=0,1, \ldots, 2^{j}-1$. Use techniques similar to those used in one-dimension to find positive constants α and β such that if f is continuously differentiable then

$$
\left|c_{j k l}\right|=\mathcal{O}\left(2^{-\alpha j}\right) \quad \text { as } \quad j \rightarrow \infty
$$

and if f has jump discontinuities then

$$
\left|c_{j k l}\right|=\mathcal{O}\left(2^{-\beta j}\right) \quad \text { as } \quad j \rightarrow \infty
$$

Compute

$$
M_{j}=\max \left\{\left|c_{j k l}\right|: k, l=0,1, \ldots, 2^{j}-1\right\} \quad \text { for } \quad j=0,1, \ldots, 8
$$

for image1.dat and image2.dat. Plot $\log M_{j}$ versus j and compare the rate of decay in each case to the asymptotic rates $\mathcal{O}\left(2^{-\alpha j}\right)$ and $\mathcal{O}\left(2^{-\beta j}\right)$ found analytically. Is there a difference between the sharp image and the blurred one?

