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Abstract

We parameterize the error in the time-relaxation model of turbulence by means
of a deterministic corrector with stochastic noise term that represents the unresolved
effects of the small scales on the large scales. Our method uses the large scales from
a reference solution of the Navier—Stokes equations to compute the corrections needed
to ensure the large scales from the turbulence model are the same as those in the
reference solution over time. In the absence of model error, the theory of determining
modes implies the size of the corrections needed over time decrease to zero provided
enough Fourier modes were observed from the reference solution. In the presence of
model error, the corrections do not decrease to zero. In this case, we call them the
unresolved tendencies. After a theoretical analysis on the size of the these tendencies,
our main result parameterizes them using a least-squares fit and characterizes the
resulting residual as a time-correlated Gaussian noise processes. In doing so, we not
only obtain an improved turbulence model, but a concrete representation of the error
in the time-relaxation model of turbulence.

1 Introduction

The time-relaxation model of turbulence was introduced in 2001 by Stolz, Adams and
Kleiser [18] as a way to approximate evolution of incompressible fluid flow with less computa-
tional effort than a direct numerical simulation of Navier—Stokes equations. The truncation
of scales in the time-relaxation model were analyzed by Layton and Neda in [10] and a
parameter sensitivity analysis performed by Neda, Pahlevani and Waters [13]. Additional
studies appear in Dunca and Neda [5], in [9] and references therein. Advantages of the
time-relaxation model include simplicity of numerical implementation using well-developed
pressure solvers already present in existing subroutine libraries as well as suitability for
wall-bounded flows.

In this paper the time-relaxation model represents a typical approximation of the in-
compressible Navier-Stokes needed for a definite context in which to develop and test the
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method of stochastic parameterization that will be described shortly. A similar parame-
terization could be performed for any dynamical system designed to approximate another.
Doing so not only has the potential to improve the accuracy of the approximate dynam-
ics, but the resulting characterization of errors further provides a quantitative framework
for comparing different turbulence models. Before embarking on such a comparative analy-
sis, it is important to first develop the theoretical and computational framework needed to
effectively perform the stochastic parameterization. This, then, is our goal.

The method of stochastic parameterization presented here is inspired by the work of
Wilks [19] for the two-layer Lorenz 96 model. In that paper the effects of the small scales in
second layer on the large scales in the first was modeled by a fourth-degree polynomial plus
a time-correlated noise term given by a discrete Ornstein—Uhlenbeck process, also called a
red-noise Markov process. Lu, Lin and Chorin [11] perform a similar study of the effects of
the small scales in the Kuramoto—Sivashinsky equation on a low-dimensional Fourier trun-
cation. In that work a second-degree polynomial based on an approximate inertial manifold
was used plus a discrete g-step noise process designed to more accurately characterize the
time-correlations present in the errors of the low-dimensional truncation. Other research
along these lines include Mohebujjaman, Rebholz, Tliescu [12], among others. See also the
references in each of the above papers.

We note that the reduced dynamics considered in all the above studies started out as
a low-dimensional projection which did not initially contain any terms to model the effects
of the small scales on the large ones. As a result, significant improvements could be made
by introducing terms deduced from the data to represent those effects. One distinguishing
feature of the time-relaxation model (and other reasonable turbulence models) is that add-
hoc and theoretical averaging techniques have already been used to construct terms which
represent the effects of the missing scales. As a result, we are working in a context where
improvements are more difficult to come by and where simply characterizing existing model
errors becomes increasingly important. Turbulence models may also include variables and
degrees of freedom that don’t obviously correspond to any of the available data when using
data-driven correction techniques. This is another difficulty that has to be overcome.

To motivate our research, recall that a natural task in the experimental sciences is to
use observational measurements of a physical system taken over time to improve existing
mathematical models of those physical systems. Related is the task of characterizing the
model error in a model in order to obtain estimates on the uncertainties in predictions
made using those approximations. Both these activities are directly connected to one of the
primary uses of mathematics in science: to predict the future. With this in mind, one of our
tasks is to improve an existing turbulence model to obtain greater predictive ability.

Consider, therefore, two dynamical systems

2—1; = F(u)  and Cfi—;‘ = F(a)
where F represents the exact dynamics we wish to compute and F represents an approximas-
tion of those dynamics that we are able to compute. Our goal is to use observational data
of the solution u to construct a more accurate dynamical system

dv
&= Gw) )



such that v(t) approximates u(t) for longer into the future than (¢) and then characterize
the errors in that model.
In [16] the residual model error was defined as

dR ~ du
o= F(u) — F(u) where i

and subsequently computed for the LANS-a and NS-a deconvolution models of turbulence.
It was discovered in all cases that the model error was correlated over short distances in both
space and time. However, for certain choices of parameters |R| grew as v/t while for other
values it grew linearly. As a good turbulence model should be free of the systematic biases
that lead to linear error growth, one of the purposes of the corrector we shall obtain through
data-driven stochastic parameterization is to remove such systematic biases. The remaining
model error can then be characterized by a mean-zero time-correlated noise process.

Although the techniques presented in this paper could also be applied to the LANS-«
and NS-a deconvolution models of turbulence, we have chosen to study only the time-
relaxation model. We remark that each of these models employ the same spatial filter to
obtain average velocity fields; however, in the time-relaxation model that filter is applied
as a relaxation term while in the others it is appears as a smoothing term in the nonlinear
velocity transport. It would be interesting to use stochastic parameterization to compare
these and other turbulence models. As this is outside the scope of the present research, such
comparisons are left for future work.

Returning to task at hand, note that obtaining an improved dynamical model from
observational measurements is different but similar to the goal of data-assimilation, whereby
incomplete observational measurements are used over time to obtain an improved estimate
of the current state for subsequent forecasting. We therefore couple the solutions u and u
in a way similar to the direct-insertion method of Charney, Halem and Jastrow [3]. Given
observational measurements of u represented by Pu where P is a low-dimensional orthogonal
projection, compute ¢ such that gy = 0 and

dq ~ du

— = (I — P)F(q+ Pu) where —= =

- F(u) 2)

to obtain an approximation of u given by ¢ + Pu. An alternative way to describe this same
algorithm may be obtained by writing U = ¢+ Pu and Q = [ — P to obtain that

a QF(U)+ PF(u)  where du _ F(u). (3)
dt dt

In real-world applications the projection P will likely include filtering to regularize and
remove measurement errors from the observational data. As data assimilation is not our
focus, we avoid such difficulties by assuming Pu is given by a noise-free Fourier projection
onto the large scales of the flow. Such an idealized setting was first considered for the
two-dimensional incompressible Navier—Stokes equations in a periodic domain by Browning,
Henshaw and Kreiss [1], see also Henshaw, Kreiss and Ystrom [8]. In [14] and [15] it was
theoretically proved and verified numerically that

Hu — UHL2 — 0 exponentially as ¢t — oo (4)
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for projections P of sufficient rank when F = F and there is no model error.
When F' # F and there is model error, the most one can hope for is a bound such as

limsupHu—UHL2 <FE (5)
t—o0

where F is a function of the model error. Ideally, we would like that
E—0 as F—F (6)

for projections P such that (4) holds. This is, in fact, the result of Theorem 2 as proved in
the present paper and further verified through numerical simulation.

We shall relate the continuous-in-time coupling described by (3) with an easier to compute
near-continuous coupling defined as follows. Let t,, = hn for h > 0 small and consider

fl—? = F(Q) for  te€ [ty thi) (7)

with initial conditions on each interval given by

ity) = Puy forn =0 (8)
" Pult,) + (I — P)limy s, a(t) for n > 0.

The above algorithm under the assumption F = F of no model error was studied in 7],
see also [2], for the two-dimensional incompressible Navier—Stokes equations. Analysis in
those works prove for any h > 0 that there is P of sufficient rank such that

|lu— ||z — 0 exponentially as ¢ — oo.

When F # F and there is model error, a result similar to (5) should hold. That is, given
suitable choices for h and P we expect there to be a bound of the form

limsup |[|u — 4|2 < E 9)

t—o00

where F, as before, is a function of the model error.
Upon defining the tendencies

7" = (vh)~' (Pu(t,) — Pu") where a" = limy q, 4(t) (10)

one can express the coupling in (8) as @(t,) = vhr"+a". Here v is is a positive constant—the
viscosity in the Navier—Stokes equation—included to scale the values of 7" in a way that is
convenient later. We now make a critical remark:

If the tendencies ™" could be predicted for t, in the future, we could then use those
tendencies to compute (7) for as far into the future as we like while maintaining the
bound described in (9).

Of course, knowing the 7 arbitrarily far into the future is essentially as difficult as knowing
the solution u itself. However, such a rephrasing of the problem indicates how F' needs to be
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modified to obtain a uniform-in-time approximation of the exact solution far into the future.
In particular, we now have a framework in which to construct a statistical model based on
the observations Pu(t,) obtained at times ¢, in the past to predict 7" in the future. The
resulting characterization of 7 can then be used to construct the dynamical model denoted
above by G which we shall call the corrected model as well as a corresponding system of
stochastic differential equations which make the model error explicit.

This paper is organized as follows. In Section 2 we recall the two-dimensional Navier—
Stokes equations and describe the time-relaxation model in detail. We then prove Theorem 2
and finish by testing the sharpness of that theorem using numerical simulation. Section 3
performs the data-driven stochastic parameterization. After a linearly-constrained least-
squares fit is performed to find the corrector the remaining mean-zero residuals are then
modeled by fitting a time-correlated red-noise process. We also state and prove two propo-
sitions relating the near-continuous dynamics used to numerically fit our parameters to the
continuous dynamics used to describe the final system of stochastic equations. The paper
finishes with some numerical tests in Section 4 comparing the original time-relaxation model
to our improved deterministic and stochastic models. This is followed by concluding remarks
and directions for future research.

2 Theory and Data Assimilation

The two-dimensional incompressible Navier—Stokes equations are given by

%—yAu—i—(u-V)u—i—Vp—f and V-u=0, (11)
where u = u(x,t) is the Eulerian velocity field, v is the kinematic viscosity, p is the physical
pressure and f a time-independent body forcing.

We begin by recalling the Fourier representation of these equations on periodic domains
and then describe the time-relaxation model of turbulence. Throughout, we shall employ
the functional notation of Constantin and Foias [4], see also Robinson [17]. In particular,
define the norms

[ull2 =472 Y kPl for  uw= ) we™”
kez? keZ?
where u;, € C? and the corresponding spaces

Vo={uw:k-u,=0, uyj=7w, u=0 and [ul,<oo}.

The condition k - u, = 0 implies the elements of each space are divergence free, u_, = uy
implies they are real valued and uy, = 0 indicates the average velocity is zero.
For simplicity denote

ul = llullo, — Null = fully— and  Jull. = ful|

as well as

H =V, V=W and V*=V_.



Note that H is a Hilbert space and V* is the dual of V' with respect to the pairing
(u,v) = 47° Z UV},
kez?

Thus, V C H C V* forms a Gelfand triple with continuous, compact and dense injections.
Now, write the Leray—Helmholtz projector and Stokes operator as

ug, - (ko =k1) [ k2 ] ks 2, ikz
My = ZT[—/CJG and Au:HZ |k|“uge™?,
keZ? keZ2

respectively, and the bilinear term as
B(u,v) =11 Z Bt where By, = Z i(ug—g - £)vy.
k€Z2 EGZZ

Note that including the projection II in the definitions of A and B ensures the range of
each operator is divergence free. This, along with the assumption that f € H, allows us to
express the incompressible two-dimensional Navier—Stokes equations (11) as

d
d—?#—uAu—l—B(u,u) = f. (12)

It is known, see [4] or [17] for details, that the incompressible two-dimensional Navier—
Stokes equations (12) posses unique strong solutions depending continuously on the initial
condition uy. Namely, we have

Theorem 1 Let ug € V and f € H. Then (12) has unique strong solutions that satisfy

ue L*((0,T);V)nL*((0,T); \/2) and % € L*((0,T); H)

for any T > 0. Furthermore, this solution is in C’([O,T]; V) and depends continuously on
the initial data ug in the V norm.

Moreover, these equations possess a unique global attractor A such that
R 1/2
ue A implies |ul| < py =vA\/°G

where G = |f|/(v?)\;) is the Grashof number. Here \; has units length > and is a dimen-
sional constant—the smallest eigenvalue of the Stokes operator—which happens to have the
numerical value of 1 since we are working with 27-periodic functions. We further recall the
orthogonality condition for the bilinear term and Ladyzhenskaya bound given by

(B(u,v),v) =0 and |(B(u,v), u)| < e lullul]|[v], (13)

respectively, which hold for functions u,v € V. Here ¢; is an absolute constant depending
only on the shape of the domain and in the present case satisfies ¢; < 2+ (27)~L.



The time-relaxation model may be obtained from the incompressible two-dimensional
Navier—Stokes equations by adding a relaxation term that contains a spatial filter designed
to attenuate small scales. We denote that filter by

Hu Z Hytipe™® here H sl
u= uge wher =1 _——"
Wk F 1+ a?|k|?
keZ?
and express the time-relaxation model as
du N o ..
— +vAu+ B(a,u) = f+ x(Ha — a). (14)

dt

The time-relaxation model contains two parameters, a which determines the length-scales
upon which the filter acts as well as the relaxation parameter y. We shall write F' — F
to indicate that the time-relaxation model converges to the two-dimensional incompressible
Navier—Stokes equations as either o — 0 or y — 0.

Define the orthogonal projection P onto the large-scale Fourier modes appearing in (2)
and its complement () by

Pu = Z uge™* and Q=I1-P (15)
0<[k[2<A
Here A > 0 is a parameter that determines the resolution of observational measurements
represented by Pu.

Before turning to the task of proving the theoretical bounds given in (5), we note, after
checking that the additional term X(H(ﬂ) — ﬂ) does no harm to the estimates, that the
well-posedness of (2) follows directly from the proof of Theorem 3.1 in [14] covering the case
when ' = F. We now state and prove Theorem 2, which not only implies £ — 0 as F—>F
but suggests the rate of convergence in terms of a and Y.

Theorem 2 Suppose the reference solution uw € A lies on the global attractor of the in-

compressible two-dimensional Navier-Stokes equations. Let U be the solution to (3) and
A >4cEv=2p2,. Then

2
limsup |u — U] < a®xCy where  Cy = %

t—00
Proof. Setting w = u — U it follows that Pw = 0 and Qw = w. Moreover,

dw ~
— = QF(u) - QF(U) (16)

= —vAw — QB(u,u) + QB(U,U) — xQ(HU — U).
Differencing yields
—B(u,u) + B(U,U) = —B(w,u) + B(w,w) — B(u,w)
and

—x(HU = U) = x(Hw — w) — x(Hu — u).



In light of the fact that Qw = w, the orthogonality (13) implies
(QB(w,w),w) =0 and (QB(u, w),w) = 0.
Now, multiplying (16) by w and integrating over space yields

1d|w|?
2 dt

viw||* = = (B(w,u), w) + x(Hw — w,w) — x(Hu — u, w).

Estimate using Ladyzhenskaya’s inequality (13) to obtain

02 14
(Bw,w),w) < wlplull < = |wlpy + 7 llw]l”

Estimate
042 | k’|2

2
T oz =0

(Hw — w,w) = —4r? Z

[k]2>A

and using similar techniques estimate

2
lQOtu—wf =47 3 (5 il )yk|*2|uk\2

2 2
Frref} 1+ o2|k|
=’ 3 (1 2|/<:r2> B2l < o Ju
A

It follows that
X2 90V 2
X|(Hu — u,w)| < [[Hu = ull[lwl] < =~ [[Hu —ullg + 7 |wl]

&4X2 v Oé4X2
< X 2 £ Zioll2 < 2 Yooz
< X+ Z ol < X0+ 2]

Since Pw = 0 the improved Poincaré inequality

k 2
w? =4n? Y Jue? < 4 Y %!wkIQ = A el

[E[2>A |k[2>A
now implies

d|w|? 2c2
BT (=290 ) P < 20303

By hypothesis 12\ > 4c?p?.; consequently,

d|w|2
7 le2 < 22X’y

vt/2

Now, multiplying by the integrating factor e**/* yields

d|w|2€w\t/2

< 9042 2 eV /2
dt > X Pv



from which it follows that
t
|w|2 < |w0‘26—y)\t/2 + 2a4X2p2 e—l/)\t/Q/ ev)\s/2d8
0

— |w ’2671//\7&/2 +aty? (%) (1 _ e*l//\t/2)
0 VA '
Therefore,

4 2
limsup |w|* < a*x*C) where C, = v
t—o00 V)\

This finishes the proof of the theorem. m

(18)

Note that F' — F as either o — 0 or X — 0 and in both these cases we have that the
upper bound E — 0 as mentioned in (6). The theorem, however, also suggests a dependency
of E as a function of o and x. As it will be necessary to compute U for different values
of o and x to find the corrector and resulting stochastic parameterization which form the
focus of our research, we pause momentarily and use those same computations to check the

sharpness of the bounds found in Theorem 2.

Figure 1: The degree to which the time-relaxation model synchronizes to the
Navier—Stokes equations when coupled on Fourier modes with |k|> < 5. The
left shows the dependency on the filter length-scale «a; the right considers the

relaxation parameter y.
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To obtain results related to previous computations we consider the flow conditions studied
n [14], see also [15]. Since, it is convenient for the corrector and resulting parameterization
to involve fewer parameters, we specifically select a forcing function f and viscosity v for
which the size of A is modest and for which the resulting fluid is energetic and undergoes
complicated time-dependent motion. Thus, we set v = 0.0001 and take the body force to be

supported on an annulus in Fourier space as

f= Z fre®e

16<|k[2<34
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with the time-independent modes f; € C? chosen such that
k-fu=0,  fou=7fw and |f|=0.0025.

Note in this case that the Grashof number G = 250000 and that A = 5 is sufficient in the
case F' = F to ensure (4) holds.

All computations were performed with 256 x 256 Fourier transforms using a spectral
Galerkin method consisting of 170 x 170 dealiased modes, only half of which need to be com-
puted because of the conjugate symmetry. Time was integrated using a 3rd-order Adams-
Bashforth method with a step size of 0.0078125. A detailed description of the numerical
code appears in [14] and [15]. Tt is interesting that the dual-processor Pentium IIT computer
on which the original code was developed had an aggregate parallel performance of about
11 time steps per second while the 32-core EPYC server used for the present computations
achieves an aggregate parallel performance of 13184 time steps per second. Although com-
puter performance has increased 1000 fold, the scope of practical problems being solved
in applications has increased at an even greater rate. Therefore, methods for constructing
approximate dynamics that efficiently yield accurate results are as relevant today as ever.

To obtain an initial condition 1y € A for the reference solution u used in our numerical
experiments, we perform a preliminary long-time simulation of only the two-dimensional
incompressible Navier—Stokes equations starting at time ¢ = —25000 in the past. By t =0
the energetics of the flow have long since appeared to enter into a time-varying state with
stationary statistical properties. The solution u obtained by moving forward in time from
ug is consequently presumed to lie close to a point on the global attractor A and to within
the limits of rounding error exactly on the global attractor corresponding to the discretized
dynamics. For reference, following the definition appearing in [6], the large-eddy turnover
time 7. of the resulting flow averaged for ¢ € [0,25000] is 7. = 90.5775.

Numerical computations to check the sharpness of the bounds in Theorem 2 were per-
formed for values of a and x such that

a € {0.0,0.005,0.01,0.02, 0.04, 0.08} (19)

and
x € {0.0,0.00625,0.0125,0.025,0.05}. (20)

Figure 1 illustrates the behavior of |u — U| for Uy = Puy where uy € A is the initial
condition described above. For all choices of parameters tested, the norm |u — U] initially
decreased at the same exponential rate as the case when F =F. Though not shown in
the graphs, when F' = F' the difference between @ and u continued to decrease at the same
exponential rate until reaching the limits of rounding error, that is, until |u — U] < 10715,
While the theoretical estimate given by (18) also describes an initial decay whose exponential
rate is independent of the choice of parameters, it should be noted that the rate e *¥/2
predicted by the theory is much slower than observed numerically. The transfer of energy
between scales due to the bilinear term B is likely responsible for the rapid convergence
of the approximating solution U to the reference solution u; however, the effects of these
physics did not play a role in the analysis.

When F' # F the evolution of |u — U| levels out after time ¢ = 2000 and begins to
fluctuate around some average value. Interestingly, the pattern of fluctuation looks quite
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similar for each of the different values of a and x tested. Note also that the separation
between each of the curves is noticeably greater when varying o compared to varying x. In
particular, the theoretical bound given in Theorem 2 where v appears with a higher power
than y seems to reflect a computational property shown by the graphs.

Before turning to the task of stochastic parameterization, we further examine the theo-
retical bound in Theorem 2 in relation to the numerical bounds

E(a, x) = max {|u— U] : t € [10000,25000] }.
Using the values summarized in Table 1, we then suppose that
log E(a, x) = mgy + my log o + my log x
and perform a least-squares fit to obtain

mo ~ 4.46007, my ~ 1.63203 and my ~ 0.83383.

Although, the values of m; and msy are not exactly equal to 2 and 1, respectively, it is
interesting that m; is almost exactly the double of ms.

On the other hand, since m; < 2 and my < 1 then the bounds of Theorem 2 are guar-
anteed to dominate in the limit. This implies that the values we have estimated for m; and
my from Table 1 could not hold possibly hold as @ — 0 or x — 0. Additional computations
for smaller values of a and x resolve this problem but would constitute a distraction too far
from our ultimate goal. It is worth noting, however, that a quick reexamination of Figure 1
indicates the curves for smaller values of a and y are just perceptibly farther apart.

Table 1: Upper bounds on ||u — U||z2 where ¢ € [10000, 25 000] as a function
of a and x for the time-relaxation model.

a | y=0.00625  y=0.0125 Y = 0.25 x = 0.05
0.005 | 1.64938e-04 3.27937e-04 6.48201e-04 1.26636e-03
0.010 | 6.46036e-04 1.26227e-03 2.41116e-03 4.41967e-03
0.020 | 2.38330e-03 4.37428e-03 7.76947e-03 1.42511e-02
0.040 | 7.45131e-03 1.37361e-02 2.32833e-02 3.58971e-02
0.080 | 2.11713e-02 3.26244e-02 5.40707e-02 8.02256e-02

3 Stochastic Parameterization

Having studied what happens when the large-scale Fourier modes of an approximating solu-
tion governed by the time-relaxation model are replaced by the corresponding Fourier modes
of a direct numerical simulation of the two-dimensional incompressible Navier—Stokes equa-
tions, we now look into the energetics needed to realize that coupling as an additional force.
To this end, consider the tendencies 7™ defined by (10). We begin by making a connection
between the discrete-in-time coupling given in (7) and the continuous-in-time coupling (2)
studied in the previous section.
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From a numerical point of view, the only thing necessary to identify (7) with (2) is to take
h equal to the size of the time steps used by the time integrator. As all our simulations have
been performed using a fixed time step of size 0.0078125, we consequently take h = 0.0078125.
From a physical point of view, this means we are sampling 7" about 11600 times per large-
eddy turnover. Mathematically, on the other hand, there is a significant difference between
near-continuous and continuous coupling.

To provide a mathematical connection between the two consider the limit h — 0. We
begin by studying the convergence of the low modes with

Proposition 1 Suppose for any T > 0 fized that there is M independent of h and large
enough such that B
|PF(a)| <M  forall tel0,T].

Then |Pu(t) — PU(t)] — 0 as h — 0.

Proof. Since u € A, then by taking M larger if necessary, we may further assume
|PF(u)| <M  forall t¢e]0,T].

By definition

Therefore, since (8) implies Pt(t,—1) = Pu(t,—1), it follows that

vh" = P(u(t,) — ") = /t P(F(u) — F()). (21)

For notational convenience denote by d(¢) the Dirac impulse and formally rewrite equa-
tions (7) governing the evolution of 4 as

du ~
i )+ v Z St —tn) where g = Puy. (22)

Consequently, for any t € [0, 7] such that ¢t # t,, for all n, we have that
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Integrating (3) in the case of continuous coupling yields

Ut)=P F(U tPF .
0 =Pu+ [ QFW)+ [ PFQ)
Therefore,
|Pa(t) — PU(t |</ |PF(u y+/ |PF (i (23)

At the same time, if ¢t = ¢,, for some n, then Pu(t) = . Thus, the above bound (23)
actually holds for all ¢t € [0,7] and h > 0.

Given the hypothesis that both |PF(u)| and |PF(@)| are bounded by M and the fact
that |t — t,| < h we conclude

|Pu(t) — PU(t)| < 2hM — 0 as h — 0.

This verifies the low modes of & and U agree in the limit. m

We remark the hypothesis in Proposition 1 on the existence of an M independent of h
is a strong one. It is likely such an assumption can be justified when A is sufficiently large
using arguments similar to those appearing in [7]. We leave such things as future research
while noting for completeness that when A = 5 our numerics fully support the claim that
|F'i| is bounded independent of h.

Proposition 2 Suppose A\ > 4c2v=2p2, as in Theorem 2. Then, there exists a non-decreasing
function g where g(e) — 0 as € — 0 such that

sup { |Pa(t) — PUt)|: t €[0,T]} <e
implies |Qu — QU (t)| < €9 — 1 for all t € [0,T] and any € > 0.

Proof. Since the high modes are governed identically as

dOi ~ dQU
% = QF(a) and 3275 = QF( ),
then setting W = Qu — QU and w = @ — U yields
% = —vAW — QB(a, i) + QB(U,U) + x(H(W) — W).
Thus,
‘Z_VZ = —VAW — QB(w, @) + QB(w,w) — QB(a, ®) + x(H(W) — W).

Taking inner product with W yields

%‘Z'ditl +u|W? < =(B(w,a), W) + (B(w, @), W) — (B(a, @), W).

Using
@2 < W2+ [Pa|Y?  and |||V < WY+ || oV

13



estimate as

(B(w, @), W)| < er|@|"2|@||"2 W72 W2 ull
< cpy|WIIW | + el AV A2 py [ W |W |2
+ 0151/2PV|W|1/2HW|| + 01A1/45PV’W\1/2||W||1/27

|(B(w,w), W)| = [(B(w, Pb), W)
< erf@| ||| 2 W W2 Pl
< g WHIWI + e A2 w2
+ a2 IW 4 e W2 w2

and
(B, w),W)| = |(B(a, Pw), W)|
< C1IUIWIIUII1/2|VV|1/2||W||1/2IIP@II
< NN oy W2 W2,
After repeatedly applying the inequality

lal” 1ol

ab < — + —

1 1
where -+-=1
p g

for various powers of p and ¢, we finally obtain that
|(B(w, @), W)| + |(B(w, ), \+| (@, ), W)
<Zwie+ Lwe+ 820w
where g(e) — 0 as ¢ — 0. It follows that

w1
dt

20

+ (m >|W|2 < g(e)(1+ [WP).

This implies
d+[WP) _

< g ).

Therefore
L+ W) < (14 [Wy|?) e,

and since Wy = 0, then |[W (#)]? < e9©T — 1 forall t € [0,7]. =

Since Proposition 1 implies € — 0 as h — 0 and hence ¢9®)7 — 1 — 0, then combining
Propositions 1 and 2 together yields that

la(t) —U(t)] = 0 uniformly for ¢ € [0,7] as h — 0. (24)
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Having finished the mathematical discussion connecting near-continuous coupling the con-
tinuous coupling in the limit h — 0, we return to our main focus: Developing a statistical
model for predicting the values of 7" into the future.

Philosophically, our method of prediction is based on the idea that the exact dynamics de-
noted by F' governing the evolution of u are either unknown or computationally too expensive
to implement. In the present case, of course, this is not true. The two-dimensional incom-
pressible Navier—Stokes equations are well known and computationally tractable. Though
we focus on two-dimensional turbulence, our purpose, in reality, is to better understand how
to improve any type of approximate dynamics using data-driven stochastic parameterization
based on observational measurements. Thus, we pretend for a moment that the only thing
we can compute is @ using the time-relaxation model and that we can also make observations
Pu of a solution u mysteriously computed by someone else. Now, since it is known that the
low Fourier modes given by Pu are sufficient to ensure u stays uniformly close to u, then all
we need is to find a way of predicting the values of Pu, or equivalently 7", for times in the
future. Switching things around, since 7" depends on Pu and Pu is approximated by Pu,
we suppose that it may be possible to approximate 7" as a function of Pu. Thus, our first
task is to find a corrector given as a functional relationship between 7" and Pu".

In our simulations A = 5 and the rank of P is 20. However, due to the fact that the
velocity field is real valued, it holds that @_j = . Therefore, only 10 complex degrees of
freedom are represented by the tendencies 7. For definiteness we postulate a functional
dependency of 7" on Pu" such that

T

" where " =QPu" +

and 2 € C19%10 and B € C¥. This form for 7" is not only convenient but it can correct for
excess dissipation—a linear phenomena—and the biases that affect some turbulence models.
To maintain a real-valued and divergence-free flow we further impose the constrains that

=7 and k-7 =0 for every n € N.

Note that the flow is automatically mean zero since k = (0,0) is not included among the
modes onto which P is a projection.

Upon counting the entries in €2 and 3, one sees there are 110 complex parameters that
need to be found in order construct our corrector. Even though this may seem like a large
number of parameters, there is little problem over fitting because of how large we take
the time series in n. In particular, we employ N = 3200000 values for 7" and 4" in our
calculations. Since h = 0.0078125, this means the resulting corrector was obtain by fitting
values over the time interval [0, 7] where T = 25 000.

In order to model the errors in the predicted tendencies 7" with a mean-zero noise process,
we impose a further linear constraint on the choice of €2 and 3 to ensure

1 — 1 —
n=1 n=1
This reduces the number of complex parameters to 100. Forming the matrix needed to

perform a least-squares fit results in a 10N x 100 complex-valued matrix taking 24GB of RAM
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Figure 2: Comparison of predicted tendencies 75 to actual tendencies 7, viewed
as a function of uy for £ = (0,1). The data has been reduced by a factor of
8000 to show detail.
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which can be processed on a well-equipped desktop computer. For computational efficiency,
similar estimates of €2 and [ can be obtained by subsampling the tendency information as

a™ and 7™ for a fixed weN (26)

chosen (for example ;1 = 32) to ensure the resulting matrices are easy to process. It is,
therefore, possible to quickly find approximations for €2 and § corresponding to each of the
combinations of « and y specified by (19) and (20) in the previous section.

To visualize how the tendencies 7" predicted by Pu™ are related to the actual tendencies
7", we create scatter plots made out of the real slices

(Reay, Re}) compared with (Reay,ReT})

for values of k and ¢ such that 0 < |k|? <5 and 0 < [¢]* <5 as well as

(Reay, Im7}")

(Imay, Re ;")

compared with (Reayg, Im7}")

compared with (Imay, Re 7))
and

(Imag, Im ;") compared with (Imag, Im 7).
As there are 400 such plots, we only reproduce a few representative examples.

Figure 2 illustrates a pronounced correlation between the reals parts of () and 7o)
but little correlation when the real and imaginary parts are mixed. Note that a graph similar
to the one on the left reveals a similar correlation between imaginary and imaginary parts; a
graph similar to the one of the right indicates little correlation when the real and imaginary
parts are mixed the other way around. These observations also hold when k = ¢ for other
Fourier modes. On the other hand, when k # ¢ the graphs in Figure 3 along with other

representative examples suggest there is very little correlation between 7, and .
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Figure 3: Comparison of predicted tendencies 7, to actual tendencies 7, viewed
as a function of ay, for k,¢ € {(0,1),(0,2) }. The data has been reduced by a
factor of 8000 to show detail.
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In general, the diagonal terms in the matrix €2 are noticeably larger than the off-diagonal
terms. Moreover, as those diagonal terms do not represent significant correlations between
the real and imaginary parts, they are also approximately real. Since the filter denoted
by H in the time-relaxation model (14) acts in Fourier space only along the diagonal, it
is natural that corrector found by our least-squares regression is concentrated along the
diagonal. Moreover, as shown by the analysis in (17) among other places, the relaxation
term acts in a purely dissipative way. Therefore, as confirmed by the positive slope of the
correlation shown on the left in Figure 2, it seems reasonable that the diagonal of €2 be
positive to correct for the extra dissipation.

Before characterizing the errors in our predicated values of 7", we explicitly write down
the function G' which provides the more accurate dynamics described in (1). We first argue,
in a somewhat heuristic fashion, that €} and 3, which depend on A, have a limits when
h — oo. To see this, first set h = t/n so that t = t,, is fixed and rewrite (21) as

1 t
t) = — P(F(u) — F(a)).
") =5 [ PP~ F@)
Under the assumptions where Proposition 1 holds equation (24) implies the convergence of
@ — U is uniform. For similar reasons PF(a) — PF(U) uniformly. Therefore,

1 t

— P(F(U)—F(a)) =0 h — 0.

as

Also, since both F(u) and F(U) are continuous functions of ¢, then



Thus, 7(t) — 7°(t) as h — 0 where 7°(t) = v 'P(F(u(t)) — F(U(t))).
Let ©° and ° be chosen to minimize

/0 17°(s) — 7°(s)|*ds where 7°(s) = Q°Pu(s) + 5° (27)

subject to the constrains that

7°,()=72(t) and k-7.(t)=0 forall  te€]0,7]

1" I
?/0 TO(S)dS:T/O 7°(s)ds.

Since the definition of 7™ includes h in the denominator, then the least-squares problems used
to define €2 and /5 are exactly the Riemann sums whose limits correspond to (27). Because
of this, we further claim without proof that 2 — Q° and § — 3° as h — 0.

Under this assumption we now insert 7" into (22) to obtain

as well as

v~ . - o L s
= F(o)+v ; O(t —t,)h(QPO" + 3) where 0" = limy ~,0(t)

and then take the limit as A — 0 to obtain the corrected model

Y =G)  whee  G() = Flu) +u(@Pu+ ) (28)

Since the dynamics of F have been modified only in the low modes, the problem of solving
for v is still well posed. Whether the system is still dissipative is less clear as indeed it
appears the numerical value of €2 found above acts as a source of energy.

Table 2: Values for the noise in the stochastic parameterization of the time-
relaxation model when a = 0.02 and x = 0.0125.

ki ko Uik U;k Gu Py
0 1 ]1.05831e-06 9.83669e-07 0.92203 0.92224
0 2 ]2.26852e-05 2.07332e-05 0.92575 0.92721
1 0 ]1.01637e-06 1.10255e-06 0.92271 0.92134
1 1 |3.69466e-06 3.84067e-06 0.92258 0.91853
1 2 ]2.23293e-04 2.20599e-04 0.94458 0.94387
2 0 |2.16467e-05 2.36145e-05 0.92643 0.92423
2 1 ]2.25934e-04 2.56874e-04 0.93935 0.94655
-2 1 | 2.59807e-04 2.28193e-04 0.94238 0.93992
-1 1 | 4.24431e-06 3.83753e-06 0.91897 0.92331
-1 2 1 2.13486e-04 2.23961e-04 0.93927 0.94268
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We turn now to the task of using a red-noise process of the form

Xy = Z,kXi?_l + 0p k(1 — Qfﬂflk)lﬂgl?

Yy = ¢Z,kykn_1 + oy (1 — ¢§,hk)1/2772 (29)
where £ and 7 are independent standard Gaussian random variables to model the errors
x} and y; in the predicted tendencies defined by

Ty Fiy, =T, — T where 0 < |k]* <A

There are two natural ways to initialize the noise process given in (29): One could simply
set X} = 0,4&) and Y = o, k) where £ and 7} are again independent standard Gaussian
random variables; alternatively, one could set X} = 2 and Y? = 49 so that 7 + X? + Y}
exactly agrees with the last observed tendency 77 prior to making predictions. The latter
makes more sense in the context of data assimilation and consequently the strategy taken in
Section 4. We now seek to find o, 4, 0y i, @5 and ¢, for which the statistical properties of
X} and Y}, reflect those of the actual errors z, and y.

Since the noise-processes used for the real and imaginary parts have an identical structure,
we describe only how to fit the parameters o, > 0 and ¢, x € [0, 1]. Moreover, for simplicity,
we omit x from the subscripts and write only oy and ¢y in what follows. Now, as in [19], we
estimate o, by computing the variance as

1 — 1«
o} = N;|$Z|2 since N;x;;:o
is already ensured by the constraint (25) used to determine Q and S.

Next, estimate ¢;. Since the autocorrelation of the noise process X' is given by

he _ COV(XI?J’_E’XI?)
‘ vixp

we first estimate the corresponding quantities for the actual errors in the tendencies as

= '
7£ T N_/ (ﬂfi - <332>) (flffrg - (f’C@)
j=1
=
=N _7 (whal™ = (@) (=)
j=1

where
| Nt
m\ __ Jj+m
<$k>——N_€jzlxk :

Although 2 and 3 were chosen so the average over all values of =} is zero, it is unlikely that
every shifted average (z}') is also zero. It is important, therefore, to subtract these terms
when estimating the autocorrelation.
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The next step is to choose ¢, such that
Sl mAl/A) forall (€N,

Unfortunately, the combination of non-linear dynamics and continuous dependence on initial
conditions that which lead to the time correlations represented by i /7P are quite different
in nature than the exponentially decaying correlations represented by ¢,. As a result, it
is impossible to obtain a truly convincing fit no matter what value of ¢, is chosen. While
a more complicated noise process as considered in [11] could lead to a better fit, the noise
given by (29) is easier to handle in the limit h — 0 and appears sufficient to quantify the
model error remaining in the corrected dynamics given by G as well as predict the rate at
which solutions obtained from that model deviate from the exact solution wu.

Therefore, to find ¢, we first choose ¢ so that /7Y ~ ¢ where ¢ is a fixed value in
(0,1), and then choose ¢y, so that ¢7* has the same value. Specifically, set ¢ = 0.5 and then
interpolate ¢y, as ¢, = /P49 where ¢ and 6 satisfy

041 ¢ 0 0+1
%—0§€<7—§ and thlog(€%>/log<%—z>.
Tk Tk Tk Tk

Before carrying out the above procedure, we say a few words about why our estimates
for o, and ¢} are already scaled in such a way as to have limits when A — 0. First, since
we already know 7" — 7°(t), the definition of o) can then be interpreted as a Riemann sum
which converges to

T
(s°)? :/ o(s) — ()P as b0,
0
For ¢; the argument is somewhat different. Express the red-noise process in terms of h as
Xi(t+ h) = ¢} Xi(t) + on(1 — ¢7") /2, (t + h)
and then iterate to obtain

Xp(t+2h) = OLXu(t + h) + op(1 — ¢ 2 + &(t + )
= O X (1) + o (1 — ¢3")* Gt + 2h)

where Eult+ 1) + &)
k
Cult +2h) = - (1+ ¢3h)1/2

is again a standard Gaussian random variable. Notice, since the exponent on ¢; scales
exactly as the increment in time with no further adjustments needed to the constants, that
this suggests—again without rigorous proof—there is some ¢ such that ¢, — ¢35 as h — 0.

In summary, having verified that o and ¢, have no obvious dimensional dependencies
on h, we assume their limits exist as h — 0 and for reference write down the corresponding
continuous in time Ornstein—Uhlenbeck process

dXy = (log ;) Xy, dt + o(—2log ¢p)/2dW,
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where the W}, are independent standard Brownian motions. Upon defining dZ;, = dX;+idY}
we obtain the full stochastic model

dV = F(V)dt + v(Q°PV + 3°)dt + vdZ. (30)

While it would be nice to make the above arguments rigorous, we leave such things for future
work and return to the numerics of the present paper.

Table 3: Values of the total variance 3?(«, x) of the error in the predicted
tendencies of the time-relaxation model.

o} x = 0.00625 x = 0.0125 x = 0.25 x = 0.05

0.005 | 2.08738e-06 .33508e-06 3.32248e-05 1.31978e-04
0.010 | 3.29975e-05 .31081e-04 5.17078e-04 2.01083e-03
0.020 | 5.03846e-04 .96061e-03 7.41123e-03 2.63869e-02
0.040 | 6.79747e-03 .43741e-02 7.87789e-02 2.18037e-01
0.080 | 6.32765e-02 .82659e-01 4.38065e-01 8.69494e-01

= N = = 0

Numerical values of 0337,“ aik, ¢z and ¢, are tabulated in Table 2. Note that the time
correlations in the noise processes denoted by ¢, and ¢, are similar for each of the Fourier
modes and have an average values of about 0.9307. Thus, the estimate

e a2 (0.9307)%577 2 0.0014958

shows the tendencies before and after one large-eddy turnover are essentially uncorrelated.
This is strikingly similar to the result reported in [16], that after one large-eddy turnover
the residual error in the LANS-a model is also uncorrelated.

Figure 4: The ideal solution constructed using the actual tendencies compared
with the original time-relaxation model, the corrected model, the stochastic
model with ¢ = 0 and eleven different realizations of the full stochastic model.
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Table 2 indicates that the variances o7, and o7, vary over two decimal orders of mag-
nitude. To measure the overall effectiveness of our corrector in predicting the tendencies we
compute the total variance

S (a, x) = Z (o2, + U;,k)

0<|k|2<5

for the values of a and x given by (19) and (20). Table 3 lists values for ¥?(a, x) computed
with respect to the least squares fit of 2 and S obtained by subsampling the tendencies as
suggested in (26) by the factor u = 32. A few of these entries were compared to the results
obtained when 2 and [ were found using the complete time series with no appreciable
differences. We remark that the values of 3?(«, ) depend more strongly on « than they do
as a function of x. This is reminiscent to how E(c,x) in Table 1 depended on a and .

4 Improved Predictions

Figure 5: The same comparison as Figure 4 with different values for the pa-
rameters o and y in the time-relaxation model.
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In this section we compare the energetics of the corrected model (28) to the original time-
relaxation model and then check whether the corrected model can be used to better predict
the future. We also check whether the full stochastic equations (30) well-characterize the
model errors in our approximate dynamics by computing spaghetti plots made using different
realizations of the underlying noise process.

To do this we first compute a solution using (7) based on the exact tendencies 7 which
couple the low Fourier modes in two-dimensional incompressible Navier—Stokes equations to
the corresponding modes in the time-relaxation model at every time step. Such a computa-
tion was performed using every choice of « and x satisfying (19) and (20) for 25000 units of
time—approximately 275 large-eddy turnovers. Then we turn off the coupling and make a
prediction into the future based on the current state in the following ways: By computing
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A free-running solution using the original time-relaxation model (14).

An improved solution using the corrected dynamics (28).

A deterministic version of (30) obtained by taking o = 0.

An ensemble of stochastic solutions to (30) computed with respect to different realiza-
tions of the noise process.

To use as a reference for the others, we also to compute the coupled solution (7) forward in
time and call this the ideal solution.

The graphs on the left in Figure 4 and in Figure 5 depict the time evolutions of the L?
norms of the solutions described above. When a = 0.02 and x = 0.125 the norm of the
solution computed by the original dynamics follows that of the ideal solution for about one
large-eddy turnover and then proceeds at a reduced level still reflecting the same pattern
of fluctuations until about about ¢ = 450. On the other hand, the norm of the solutions
produced by the corrected dynamics and stochastic models do not exhibit any increased
levels of dissipation and track the norm of the ideal solution quite closely to time ¢ = 450.
After that the norms diverge, but the average levels of the L? energy remain comparable.
When a = 0.04 and x = 0.025 the excess dissipation in the original time-relaxation model
becomes evident almost immediately and norm of that solution runs off the bottom of the
graph at ¢ = 350. It continues to decrease until the end of the computation at t = 700.
As in the previous case, the corrected and stochastic solutions maintain the same level of
energetics on average as the ideal solution throughout most of the interval.

Before examining the graphs on the right, we also notice the ensemble of stochastic
solutions includes both the ideal, the corrected and the deterministic solution with ¢ = 0
in their envelope. Moreover, the different members of the ensemble start to diverge from
each other at a time and rate similar to the way they diverge from the ideal solutions.
Thus, one does not need the ideal solution to estimate the errors in the prediction. This
is important, because for practical problems the ideal solution is known only in retrospect
through data-assimilation.

The graphs on the right in Figure 4 and Figure 5 depict the L? norm of differences between
the ideal solution and the original, the corrected, the case when o = 0 and the fully stochastic
solutions. Since the trajectories obtained by the deterministic solutions again fall within the
envelope of stochastic solutions, one can again estimate the error in our predictions from
the stochastic solutions, for example, by computing the norms of the differences between
members of the stochastic ensemble.

When a = 0.02 and y = 0.0125 we are happy to note that the solution obtained from the
corrected dynamics as well as the deterministic solution when o = 0 both remain closer to
the idea solution than the solution obtained from the original time-relaxation model over the
whole interval shown by the graph. However, such happiness is short lived, because when
a = 0.04 and x = 0.025 the situation is reversed: the solution computed using the original
dynamics stay closer to the ideal solution over much of the graph up to time t = 450. The
reason for this warrants further study. On one hand this may be an effect of deterministic
chaos resolved positively by repeatedly performing the same experiment using different initial
conditions; on the other, it could be a limitation of the methods used.
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5 Conclusions

This paper improved the approximate dynamics of the time-relaxation model of turbulence
by creating a corrector and stochastic parameterization obtained by coupling the time-
relaxation model through observational measurements to a direct-numerical simulation of
the two-dimensional incompressible Navier—Stokes equations. The final result was a system
of stochastic differential equations representing an improved dynamical model with more
accurate energetics, less bias and the ability to estimate errors in the resulting predictions.
While an improved ability to predict the exact flow was also observed in some cases, such
improvements were not universal.

We have attempted to be as rigorous as possible; however, the present paper is of a
numerical nature with rigorous justification of theoretical results planned for the future. In
particular, there is still significant work to be done, for example, to fully characterize the
circumstances under which the hypothesis of Proposition 1 hold. Moreover, we have argued
in a heuristic way when passing to the limit as h — 0. It would appear that providing
fully rigorous analysis connecting the continuous and near-continuous dynamical systems
discussed in this paper is an important direction for further research.

We remarked in the beginning that the error in turbulence models is correlated in time as
well as space. The present paper characterized the time correlations in terms of a red-noise
process but did not address correlations over short distances in space. We note, however,
that the noise process appearing in our parameterization is concentrated only on the Fourier
modes such that 0 < |k|> < 5. Because of this, we automatically obtain spatial correlations.
While there is reason to believe these spatial correlations are on the right scales, this has
not been verified. Moreover, it is not clear such spatial correlations remain invariant if a
larger number of Fourier modes, for example those with 0 < |k|* < 10, were used for the
parameterization instead.

We close with a speculation that average properties such as the norm may better reflect
the physical questions people are interested in than the exact velocity field. In meteorology,
for example, people want to know what the temperature will be and how much it will snow,
rather than the exact position of the molecules which make up the air. Therefore, in light of
the mixed success in obtaining a better prediction of the velocity field itself, it is comforting
to reflect on how much improved were the predictions of the L? energetics.
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