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We study the number of determining modes neessary for ontinuous data

assimilation in the two-dimensional inompressible Navier{Stokes equations.

Our fous is on how the spatial struture of the body foring a�ets the rate

of ontinuous data assimilation and the number of determining modes. These

quantities are shown to depend strongly on the length sales present in the

foring.

Dediated to the memory of Osar P. Manley

1. Introdution

In the late 1960s satellite-borne observation systems began produing data on the

limate that was nearly ontinuous in time. Charney, Halem and Jastrow proposed

in [5℄ that the equations of the atmosphere themselves be used to proess this data

and obtain improved estimates of the urrent atmospheri state. Their method, alled

ontinuous data assimilation, is to insert the observational measurements diretly into

a model as the latter is being integrated in time. A summary of the use of ontinuous

data assimilation in pratial weather foreasting appears in Daley [12℄.

Let u

1

(t) represent physial reality at time t. We represent the observational

measurements orresponding to u

1

(t) at time t by P

�

u

1

(t), where P

�

is a �nite-rank

orthogonal projetion. Here � represents a parameter, namely the resolution of the

measuring equipment, that will be made preise later. Let u

2

(t) be the approximation

to u

1

(t) obtained from ontinuous data assimilation of the observational measurements

P

�

u

1

(�) over the time interval � 2 [0; t℄. We will desribe the details of onstruting

u

2

(t) later. Our goal is to �nd onditions on � in terms of the other physial parameters

of the system whih guarantee that u

2

(t) will onverge to u

1

(t) as t!1. Note that

we assume the idealized situation in whih the observational measurements P

�

u

1

(t)

are error free; therefore, there is no need for the additional �ltering neessary in

appliations.

Inspired by the work of Browning, Henshaw and Kreiss [2℄ and motivated by

appliations involving the full dynamis of the atmosphere, we study ontinuous data
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assimilation in the simpler ase of a visous two-dimensional inompressible uid in a

periodi domain. Thus, we take the physial reality u

1

(t) to be the exat solution of

the two-dimensional inompressible Navier{Stokes equations

�u

1

�t

+ (u

1

� r)u

1

� ��u

1

+r�

1

= f; r � u

1

= 0 (1.1)

with initial onditions u

1

(0) = u

0

on the L-periodi torus 
 = [0; L℄

2

. Here u

1

represents the Eulerian veloity �eld, � the kinemati visosity, f a body foring and

�

1

the physial pressure.

It is lear from (1.1) that if

R




u

0

= 0 and

R




f = 0, then

R




u

1

(t) = 0 for all time.

Therefore, we onsider only solutions with zero mean. It follows that at any time t the

veloity �eld, the body foring and the pressure may eah be represented by a Fourier

series of the form

a =

X

k2J

â

k

�

k

; where J =

n

2�m

L

: m 2 Z

2

n f0g

o

; (1.2)

�

k

(x) = e

ik�x

and â

k

= â

�k

. Note that the Fourier oeÆients orresponding to

the veloity and the foring are C

2

-vetor valued suh that k � â

k

= 0 whereas the

oeÆients orresponding to the pressure are salar. De�ne the norms

jaj = L

n

X

k2J

jâ

k

j

2

o

1=2

and kak = L

n

X

k2J

jkj

2

jâ

k

j

2

o

1=2

: (1.3)

The Fourier spae representation provides a onvenient way of desribing the

orthogonal projetions needed for our study. For a suh that jaj <1 we de�ne

P

�

a =

X

jkj

2

��

â

k

�

k

and Q

�

= I � P

�

: (1.4)

Thus, for the projetion P

�

u

1

(t) given above, the quantity �

�1=2

represents the small-

est length sale of the uid whih an be observed|the resolution of the presumed

measuring equipment. Note that � and the rank N of P

�

are essentially proportional

in two dimensions.

In light of the results on determining projetions postulated by Foias and Temam

in [25℄ and proven in [6, 7, 28℄, similar results to those we shall present here are likely

to hold for any family of projetions P

�

for whih there exists onstants C

1

and  > 0

not depending on the rank N of P

�

suh that ju�P

�

uj � C

1

N

�

kuk for all u suh that

kuk < 1. See also [8℄ and [32℄. Further work along these lines appears in [4℄ for the

physially relevant model onsisting of the two-dimensional Navier{Stokes equations

on the surfae of a rotating sphere.

Let us agree that if we were given u

0

exatly, that is, the detailed reality at time

t = 0, then we ould integrate the Navier{Stokes equations and hene get u

1

(t) exatly

for any t > 0. Therefore, the main diÆulty is that we an not obtain u

0

exatly by
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measurement. However, we an obtain P

�

u

1

(t) over as large an interval in time as

needed. The question beomes, how do we �nd u

1

(t) from P

�

u

1

(t). In general this

is not possible, so alternatively, let us �nd u

2

(t), a good asymptoti approximation

of u

1

(t).

To motivate �nding u

2

(t) let us rewrite the Navier{Stokes equations (1.1) as a

system of two oupled di�erential equations. Let u

i

= p

i

+ q

i

where p

i

= P

�

u

i

and

q

i

= Q

�

u

i

for i = 1; 2. Sine P

�

and Q

�

projet onto eigenfuntions of the � operator

then they ommute with it. Similarly P

�

and Q

�

ommute with the divergene and

the gradient. Thus, projeting (1.1) by P

�

and then by Q

�

gives

8

>

<

>

:

�p

1

�t

+ P

�

�

(p

1

+ q

1

) � r(p

1

+ q

1

)

	

� ��p

2

+rP

�

�

1

= P

�

f; r � p

1

= 0

�q

1

�t

+Q

�

�

(p

1

+ q

1

) � r(p

1

+ q

1

)

	

� ��q

1

+rQ

�

�

1

= Q

�

f; r � q

1

= 0:

Sine p

1

(t) is given diretly by measurement, we need only integrate the seond

equation to �nd u

1

(t). However, sine we do not know q

1

(0) then integrating the

seond equation is impossible. Therefore, we ompute an approximation q

2

(t) of q

1

(t)

by integrating

�q

2

�t

+Q

�

�

(p

1

+ q

2

) � r(p

1

+ q

2

)

	

� ��q

2

+rQ

�

�

2

= Q

�

f; r � q

2

= 0 (1.5)

with initial onditions q

2

(0) = � where � = Q

�

� represents an initial guess of the

high modes q

1

(0) of the exat solution. Hene, the problem for us is a problem of

initialization, and we solve it by initializing the high frequenies any way we want and

then integrating.

In the numerial part of this paper we simply take � = 0, however, an initial

approximation of q

1

(0) might be more reasonably obtained by taking � = Q

�

�

�

p

1

(0)

�

where � is an approximate inertial manifold for the two-dimensional Navier{Stokes

equations. More information on approximate inertial manifolds and their applia-

tions may be found in Debusshe and Marion [13℄, Devulder and Marion [14℄, Dubios,

Jauberteau and Temam [17℄, Foias, Manley and Temam [19, 20℄ and [15℄, [18℄, [23℄,

[30℄, [42℄ and referenes therein.

A systemati omputational study of ontinuous data assimilation in deaying

two-dimensional turbulene was �rst performed by Browning, Henshaw and Kreiss [2℄.

In [2℄, omputations were done on the 2�-periodi torus with visosity � = 10

�5

,

foring f = 0 and � = 0. First, a highly aurate referene alulation was made

to obtain the solution u

1

(t) of (1.1) starting from presribed initial onditions u

0

suh that ju

0

j = 1. The observational measurements P

�

u

1

(t) were saved and subse-

quently used for assimilation into a seond alulation to obtain u

2

(t). Notie that

sine the foring is zero, both u

1

and u

2

eventually onverge to zero. However, short

time transient behavior may be studied, for example, by monitoring the relative error

�

�

u

1

(t)� u

2

(t)

�

�

=

�

�

u

1

(t)

�

�

. Under these onditions, it was observed in [2℄ that ontinuous

data assimilation of the 64 lowest Fourier modes of u

1

was suÆient to aurately

reonstrut the small sales of u

1

, but assimilation of the 16 lowest modes was not.

3



A similar study of deaying three-dimensional turbulene was reently ompleted by

Kreiss and Ystr�om in [33℄. In this paper we generalize [2℄ by onsidering a non-zero

body foring f to avoid the diÆulties of u

1

and u

2

deaying to zero.

Continuous data assimilation is essentially the simplest algorithm for onstruting

an approximate solution u

2

suitable for treatment by the theory of determining modes

of Foias and Prodi [22℄. In this ontext it is neessary to view u

2

as a solution to a

modi�ed two-dimensional Navier{Stokes equations. This may be done by adding the

evolution equations for p

1

(t) to the evolution equations for q

2

(t). Thus, we obtain

�u

2

�t

+ (u

2

� r)u

2

� ��u

2

+r�

2

= f

2

; r � u

2

= 0 (1.6)

with initial onditions u

2

(0) = P

�

u

0

+ � where � = Q

�

� and

f

2

= f + P

�

�

(u

2

� r)u

2

� (u

1

� r)u

1

	

: (1.7)

Note that f

2

is a ompliated time-dependent feedbak foring funtion that depends

on u

2

to ensure that P

�

u

1

(t) = P

�

u

2

(t) for all time t � 0.

The theory of determining modes, however, makes no assumptions on how u

2

was obtained. So, for a moment, let us forget that u

2

was onstruted by ontinuous

data assimilation and simply suppose it to be another solution to the Navier{Stokes

equations with a given time dependent foring f

2

(t). To avoid possible onfusion we

shall refer to independent solutions of the standard inompressible two-dimensional

Navier{Stokes equations (1.1) by v

1

and v

2

and their orresponding foring funtions

by g

1

and g

2

when disussing the general theory of determining modes.

De�nition 1.1. The number of determining modes is the rank of the smallest

projetion P

�

suh that for any two solutions v

1

and v

2

of (1.1) the onvergene

�

�

P

�

v

1

(t)� P

�

v

2

(t)

�

�

! 0 as t!1 guarantees that

�

�

v

1

(t)� v

2

(t)

�

�

! 0 as t!1. We

denote by �



the smallest value of � suh that the rank of P

�

is equal to the number

of determining modes N



.

It was �rst shown in [22℄ that the two-dimensional Navier{Stokes equations pos-

sess a �nite number of determining modes. At about the same time a result more di-

retly related to ontinuous data assimilation was independently proved by Ladyzhen-

skaya [35℄. It is lear that the number of determining modes should depend on the

foring, the visosity, and the size of the domain. In [43℄ Tr�eve and Manley gave a

physial argument relating the number of determining modes in Rayleigh{B�enard on-

vetion to the Rayleigh number divided by the Prandtl number. By identifying the

buoyany fore in Rayleigh{B�enard onvetion with the body foring in the Navier{

Stokes equations this lead to

De�nition 1.2. The Grashof number is de�ned as

Gr(f) = (L=2��)

2

lim sup

t!1

�

�

f(t)

�

�

:

The �rst reasonable rigorous estimate on the number of determining modes in terms

of the Grashof number was provided by Foias, Manley, Temam and Tr�eve [21℄. It
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was observed by Foias and Temam in [24℄ and in [31℄ that the theory of determining

modes an be extended to families of Navier{Stokes equations with asymptotially

equivalent body foring. This is of partiular interest to us, sine the foring funtion

f

2

in ontinuous data assimilation is not equal to f . The best estimate to date in the

periodi ase is given in [32℄ whih we shall restate here as

Theorem 1.3. Let v

1

and v

2

be two solutions of the two-dimensional Navier{Stokes

equations on the L-periodi torus with orresponding foring funtions g

1

and g

2

and

possibly di�erent initial onditions. Then there exists a onstant 

1

independent of �,

L, g

i

or of any initial onditions suh that for every �(L=2�)

2

> 

1

Gr(g

1

) the limits

�

�

g

1

(t)� g

2

(t)

�

�

! 0 and

�

�

P

�

v

1

(t)� P

�

v

2

(t)

�

�

! 0 as t!1

imply that





v

1

(t)� v

2

(t)





! 0 as t!1:

Before proeeding, let us �rst note that a minor modi�ation of the proof of

Theorem 1.3 presented in [32℄ allows us to relax the hypothesis on g

1

and g

2

. In

partiular, it is suÆient to require in Theorem 1.3 that

�

�

Q

�

g

1

(t) � Q

�

g

2

(t)

�

�

! 0 as

t!1. The intuitive reason for this is lear. Sine the di�erene of the low modes of

v

1

and v

2

is already ontrolled by hypothesis and onverge to zero, then all we need to

show is that the di�erene of the high modes of v

1

and v

2

onverge to zero. Therefore

only the di�erene of the high modes of g

1

and g

2

need enter into the proof. In light

of this observation, Theorem 1.3 may be rewritten as

Theorem 1.4. Let v

1

and v

2

be two solutions of the two-dimensional Navier{Stokes

equations on the L-periodi torus with orresponding foring funtions g

1

and g

2

and

possibly di�erent initial onditions. Then there exists a onstant 

1

independent of �,

L, g

i

or of any initial onditions suh that for every �(L=2�)

2

> 

1

Gr(g

1

) the limits

�

�

Q

�

g

1

(t)�Q

�

g

2

(t)

�

�

! 0 and

�

�

P

�

v

1

(t)� P

�

v

2

(t)

�

�

! 0 as t!1

imply





v

1

(t)� v

2

(t)





! 0 as t!1:

Thus, we may hoose the low modes of g

1

and g

2

to be anything we like provided

this hoie ensures jP

�

v

1

(t)� P

�

v

2

(t)j ! 0 as t!1. In the ase of ontinuous data

assimilation we note that

�

�

Q

�

g

1

(t)�Q

�

g

2

(t)

�

�

=

�

�

Q

�

f

1

(t)�Q

�

f

2

(t)

�

�

= 0 and

�

�

P

�

v

1

(t)�

P

�

v

2

(t)

�

�

=

�

�

P

�

u

1

(t) � P

�

u

2

(t)

�

�

= 0 for all time t � 0. Therefore, given � > 

1

Gr(f)

and provided that the solution u

2

(t) to (1.6) exists, it follows that





u

1

(t)�u

2

(t)





! 0

as t!1. In partiular, ontinuous data assimilation works for � large enough.

We begin our study of how the onvergene of u

2

to u

1

is a�eted by the spatial

struture and length sales present in the foring f by onsidering the time-independent

foring funtions

G(R) =

�

f : Gr(f) = R

	

:
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Given f 2 G(R) let u

1

be the orresponding solution of (1.1). Resale this solution

as follows. Set

~

f(x) = 8f(2x), ~u

1

(x; t) = 2u

1

(2x; 4t), ~�

1

(x; t) = 4�

1

(2x; 4t) and

~u

0

(x) = 2u

0

(2x). Sine

~

f , ~u

1

, ~�

1

and ~u

0

are L=2-periodi, then they are also L-

periodi. Thus, we �nd that ~u

1

satis�es

d~u

1

dt

+ (~u

1

� r)~u

1

� ��~u

1

+r~�

1

=

~

f; r � ~u

1

= 0 (1.8)

with initial onditions ~u

1

(0) = ~u

0

on the L-periodi torus. That is, ~u

1

is a solution

to the two-dimensional Navier{Stokes equations with foring

~

f . Sine j

~

f j = 8jf j then

~

f 2 G(8R). It follows that for every f 2 G(R) there is an

~

f 2 G(8R) suh that the

orresponding solutions u

1

and ~u

1

have exatly the same dynamis.

The above observation shows that the Grashof number alone annot determine

the dynamial omplexity of the two-dimensional Navier{Stokes equations. Therefore,

in order to ondut a more detailed analysis we onsider the negative Sobolev norm

or dual norm of kfk de�ned as

kfk

�

= L

n

X

k2J

jkj

�2

j

^

f

k

j

2

o

1=2

: (1.9)

As we shall see below, this norm will be useful in obtaining a determining modes result

whih distinguishes between foring funtions with the same Grashof number that are

supported on di�erent spatial length sales. Namely, we shall prove

Theorem 1.5. Let u

1

(t) be a solution on the global attrator of the two-dimensional

Navier{Stokes equations (1.1) with time-independent foring f 2 L

2

(
). Let u

2

(t) be

the approximation to u

1

(t) obtained from the ontinuous data assimilation (1.6) of the

observational measurements P

�

u

1

(�) over the time interval � 2 [0; t℄. Then there are

onstants K

1

and K

2

independent of all initial onditions suh that

(i) If there exists � suh that 0 < 2� � ��� 

2

1

�

�3

kfk

2

�

then

�

�

u

1

(t)� u

2

(t)

�

�

�

�

�

u

1

(0)� u

2

(0)

�

�

K

1

e

��t

for t � 0:

(ii) If there exists � suh that 0 < 2� � ��� 

2

1

(�

3

�)

�1

jf j

2

then





u

1

(t)� u

2

(t)





�





u

1

(0)� u

2

(0)





K

2

e

��t

for t � 0:

Note that Theorem 1.5 shows that the onvergene of u

2

to u

1

is, in fat, expo-

nential in time. This leads us to the following de�nition.

De�nition 1.6. The rate of ontinuous data assimilation of enstrophy is the supre-

mum over all � suh that





u

1

(t)� u

2

(t)





= O(e

��t

) as t!1.

This paper onsists of analysis followed by omputational results. First we plae

equations (1.1) and (1.6) in the appropriate funtional settings that allow rigorous

mathematial analysis of their solutions. We then state a number of important in-

equalities and fats that we shall need later on. The main goal of our work is to

6



demonstrate that there is a strong relationship between the spatial struture of f ,

the rate of ontinuous data assimilation and the number of determining modes in

ontinuous data assimilation.

Our analysis begins by showing the ontinuous data assimilation equations (1.6)

are globally well posed. For omputational relevane we restrit our attention to strong

solutions. We then establish a number of lemmas and eventually prove Theorem 1.5.

We lose with a disussion of whether the system of equations given by (1.1) and (1.6)

is dissipative. When � = 0 equation this system is dissipative sine in this ase f

2

= f

and the feedbak term P

�

�

(u

2

� r)u

2

� (u

1

� r)u

1

	

= 0. Thus u

2

is a solution of the

two-dimensional Navier{Stokes equations for foring f . For

� > min

�



2

1

�

�4

kfk

2

�

; 

1

�

�2

jf j

	

(1.10)

dissipativity follows from the onvergene of u

2

to u

1

as in Theorem 1.5. However, for

intermediate values of � the dissipativity of the ontinuous data assimilation equations

remains in question.

Our omputational results onsist of two sets of experiments. All experiments

were performed with � = 0:0001 and � = Q

�

u

2

(0) = 0 on the 2�-periodi torus for

foring funtions with a Grashof number of R = 250000. Guided by Theorem 1.5 we

�rst onsider time-independent foring funtions f 2 G(R) supported on an annulus

in Fourier spae. Thus, f may be written

f =

X

�

m

�k

2

��

M

^

f

k

�

k

: (1.11)

with

^

f

k

=

^

f

�k

, k �

^

f

k

= 0 and

^

f

0

= 0. We take the width of the annulus to be

�

M

� �

m

= 4�

1=2

f

� 2 where �

f

= (�

m

+ �

M

)=2:

The width of the annulus is proportional to the wave number about whih it is entered.

It was shown by Constantin, Foias and Manley in [10℄ that no Kolmogorov ow,

that is no ow driven by foring only one Fourier mode, an sustain a Kraihnan

inertial range spetrum in a statistially steady state. However, two eigenmodes an

be suÆient. When �

f

� 1 our ondition ensures that f fores Fourier modes over a

range of di�erent eigenvalues. In partiular, these foring funtions generate nonlinear

interations leading to time-dependent ows involving all the Fourier modes. This

avoids the foring funtions exhibited by Marhioro in [37℄ whih lead to steady ows

whih are globally asymptotially stable for any Reynolds number. In partiular,

Marhioro obtains

Theorem 1.7. If f is supported on only the lowest modes in Fourier spae then the

solution to (2.6) onverges to a steady ow whih is globally asymptotially stable.

Constantin, Foias and Temam give a simpli�ed proof of this result in [11℄.

For any given �

f

let F(�

f

) be the set of all funtions f of the form (1.11) suh

that Gr(f) = R. In this way we obtain a one parameter family of subsets F(�

f

) of

7



G(R) suh that eah subset onsists of funtions supported only on ertain spei�ed

spatial length sales. For funtions f 2 F(�

f

) we have that

�

�

1=2

f

+ 1

�

�2

jf j

2

� kfk

2

�

�

�

�

1=2

f

� 1

�

�2

jf j

2

: (1.12)

Therefore, kfk

�

dereases for f 2 F(�

f

) as �

f

inreases.

In our �rst set of experiments we vary �

f

from 25 through 625 and selet funtions

f 2 F(�

f

) by hoosing the amplitudes of the oeÆients

^

f

k

in (1.11) aording to a

Gaussian distribution. For eah funtion seleted, a number of ontinuous data assim-

ilation experiments were onduted using di�erent values of � for the observational

measurements P

�

u

1

(t). We measure how the rate of ontinuous data assimilation �

depends on the data assimilation parameter � and the foring length-sale parameter

�

f

. For eah foring funtion f , the number of determining modes is onsequently the

rank of the smallest projetion P

�

for whih � is learly positive.

Table 1. The relationship between length sale �

f

in the

foring, �



and the number of determining modes N



.

�

f

25 64 121 169 256 361 484 529 576 625

�



4 13 26 49 73 82 73 65 27 10

N



12 44 88 148 232 260 232 212 88 36

The results in the �rst half of Table 1 are, at �rst, rather surprising. The analytial

bounds in part (i) of Theorem 1.5 suggest that the number of determining modes

should derease as �

f

inreases; however, our omputations indiate that the number

of determining modes atually inreases by more than an order of magnitude while �

f

ranges from 25 to 361. Only for �

f

greater than 361 does the number of determining

modes given by our alulations reet the derease of kfk

�

as �

f

inreases.

Why does a ow driven by a funtion in F(428) require more determining modes

than a ow driven by a funtion in F(25)? We ondut a seond set of omputational

experiments to shed some light on the ause of this phenomenon. Given f

L

2 F(25)

and f

H

2 F(484) we set f = �

L

f

L

+ �

H

f

H

where �

2

L

+ �

2

H

= 1. In this way we obtain

foring funtions supported on two disjoint annuli in Fourier spae|one on small wave

numbers, the other on large. Here �

L

and �

H

are parameters determining the relative

weights of the large and small length sales in the foring. When �

H

is lose to zero f

may be viewed as the perturbation of the large sales f

L

by the small sales f

H

; when

�

L

is lose to zero f is the perturbation of the small sales f

H

by the large sales f

L

.

We determine whih perturbation more signi�antly a�ets the number of determining

modes omputationally in Table 2.
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Table 2. The relationship between the weights �

L

and �

H

in the

foring, �



and the number of determining modes N



.

�

L

0 0.080 0.160 0.320 0.768 1

�

H

1 0.997 0.987 0.947 0.640 0

�



73 37 26 13 5 4

N



232 120 88 44 20 12

As shown by the �rst three olumns, perturbing the small sales by the large sales

has the greatest e�et. This suggests that it is the absene of an inreasing number

of the large length sales in the foring whih is primarily responsible for the inrease

in number of determining modes as �

f

ranging from 25 though 361 in the �rst set of

experiments.

We dediate this paper to the memory of Osar P. Manley, a good friend and

soure of enouragement, whose interest and physial insight motivated and laid the

foundations for our work.

2. Preliminaries

In this setion we haraterize the spaes H, V and V

0

whih appear in the study of

the Navier{Stokes equations and state a number of inequalities and fats that we shall

need later on. For further details see, for example, Constantin and Foias [9℄, Doering

and Gibbon [16℄, Robinson [39℄ or Temam [40, 41℄.

First, de�ne the spaes V

�

in terms of the formal Fourier series (1.2) as

V

�

=

n

u =

X

k2J

û

k

�

k

: kuk

2

�

<1; û

k

= û

�k

; k � û

k

= 0 and û

0

= 0

o

where the norm

kuk

2

�

= L

2

X

k2J

jkj

2�

jû

k

j

2

: (2.1)

Note that

kuk

�

= sup

�

hu; vi : v 2 V

��

and kvk

��

= 1

	

(2.2)

where the pairing

hu; vi = L

2

X

k2J

û

k

� v̂

�k

:

Fourier theory implies that V

�

is a subspae of L

2

(
) for � � 0. Furthermore, V

��

may be identi�ed with the ontinuous dual of V

�

.

A relation exists between the norms de�ned in (2.1) and the projetions de�ned

in (1.4) whih allows us to bound the norms of Q

�

u and P

�

u in a way that depends on

the resolution parameter �. For � < � we obtain the following version of the Poinar�e

inequality

jjQ

�

uk

2

�

= L

2

X

jkj

2

>�

jkj

2�

jû

k

j

2

�

L

2

�

���

X

jkj

2

>�

jkj

2�

jû

k

j

2

=

1

�

���

kQ

�

uk

2

�

; (2.3)
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and for � > � we obtain the inequality

jjP

�

uk

2

�

= L

2

X

jkj

2

��

jkj

2�

jû

k

j

2

� L

2

�

���

X

jkj

2

��

jkj

2�

jû

k

j

2

= �

���

kP

�

uk

2

�

: (2.4)

Sine Q

�

1

u = u for �

1

= (2�=L)

2

then (2.3) yields the usual Poinar�e inequality

kuk

2

�

�

1

�

���

1

kuk

2

�

for � < �: (2.5)

The funtional spaes for solving (1.1) and (1.6) may now be de�ned as H = V

0

,

V = V

1

and V

0

= V

�1

. Note that the norms kuk

0

, kuk

1

and kuk

�1

are respetively

the norms juj, kuk and kuk

�

given in (1.3) and (1.9). Thus, H onsists of the square-

integrable funtions on the L-periodi torus 
 whih are divergene free and have

zero mean, V are those funtions in H whose �rst order derivatives are also square

integrable, and V

0

is the dual of V . Moreover, by Parseval's identity the norms on H

and V may also be expressed as juj =

� R




u � u

	

1=2

and kuk = jruj = jr � uj.

De�nition 2.1. De�ne the Leray projetor P

�

:L

2

! H to be the L

2

orthogonal

projetion from L

2

onto H. Further de�ne A:V ! V

0

and B:V � V ! V

0

to be the

ontinuous extensions of the operators given by

Au = �P

�

�u and B(u; v) = P

�

(u � rv)

for any suitably smooth funtion u. Notie that the domain D(A) of A is V

2

.

For u

0

2 V and f 2 H we write the Navier{Stokes equations (1.1) as the funtional

equation in H given by

du

1

dt

+ �Au

1

+B(u

1

; u

1

) = f (2.6)

with initial onditions u

1

(0) = u

0

. Under these hypothesis equations (2.6) possess

unique strong solutions depending ontinuously on the initial ondition u

0

. This is

stated spei�ally as

Theorem 2.2. Let u

0

2 V and f 2 L

2

lo

�

(0;1);H

�

. Then (2.6) has unique strong

solutions that satisfy

u

1

2 L

1

�

(0; T );V

�

\ L

2

�

(0; T );D(A)

�

and

du

1

dt

2 L

2

�

(0; T );H

�

for any T > 0. Furthermore, this solution is in C

�

[0; T ℄;V

�

and depends ontinuously

on the initial data u

0

in the V norm.

A proof of this theorem an be found, for example, in any of the referenes

[9℄, [16℄, [39℄ or [40, 41℄ mentioned above. In the next setion we prove a similar

result for the ontinuous data assimilation equations (1.6) governing the evolution of

u

2

(t). Note that the main diÆulty there lies in ontrolling the feedbak foring f

2

.
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Let us now reall some algebrai properties of the non-linear term B(u; v) that

play an important role in our analysis. These results may be found in any of the

referenes [9℄, [16℄, [39℄ or [40, 41℄. For u, v, w 2 V we have that




B(u; v); w

�

= �




B(u;w); v

�

(2.7)

and onsequently




B(u; v); v

�

= 0: (2.8)

Furthermore, if v 2 D(A) then

�

B(v; v); Av

�

= 0 (2.9)

and by di�erentiation of (2.9) we obtain

�

B(u; v); Av

�

+

�

B(v; u); Av

�

+

�

B(v; v); Au

�

= 0 (2.10)

for u; v 2 D(A). Note that onditions (2.9) and (2.10) are valid only for the two-

dimensional Navier{Stokes equations on a periodi domain.

The non-linear term may be estimated by H�older's inequality followed by La-

dyzhenskaya's inequality [34℄. In order to expliitly estimate the onstants appearing

in our analysis we state Ladyzhenskaya's inequality here as

Lemma 2.3. Given u 2 V then

kuk

2

L

4

� 

1

jujkuk (2.11)

where 

1

� 2 + (2�)

�1

for the two-dimensional torus 
.

With this result in hand, if u, v, w 2 V then

�

�




B(u; v); w

�

�

�

� kuk

L

4

kvkkwk

L

4

� 

1

juj

1=2

kuk

1=2

kvkjwj

1=2

kwk

1=2

;

(2.12)

and if u 2 V , v 2 D(A) and w 2 H then

�

�




B(u; v); w

�

�

�

� kuk

L

4
krvk

L

4
jwj � 

1

juj

1=2

kuk

1=2

kvk

1=2

jAvj

1=2

jwj:

(2.13)

We end this setion with some well known bounds on the time averages of ku

1

k

and jAu

1

j in terms of u

0

and f whih will be used in the next setion.

Lemma 2.4. Let u

1

(t) be the unique strong solution to (2.6) with time-dependent

foring f 2 L

2

lo

�

(0;1);H

�

and initial ondition u

0

2 V . Then

1

t

Z

t

0





u

1

(�)





2

d� �

1

�t

ju

0

j

2

+

1

�

2

t

Z

t

0





f(�)





2

�

d� (2.14)

and

1

t

Z

t

0

�

�

Au

1

(�)

�

�

2

d� �

1

�t

ku

0

k

2

+

1

�

2

t

Z

t

0

�

�

f(�)

�

�

2

d�: (2.15)
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Proof: The proof may be found in any of the referenes [9℄, [16℄, [39℄ or [40, 41℄. For

ompleteness, we shall present formal alulation here that ould be made rigorous if

so desired.

To derive the �rst inequality, multiply (2.6) by u

1

and use (2.8) to obtain

1

2

d

dt

ju

1

j

2

+ �ku

1

k

2

= (f; u

1

) � kfk

�

ku

1

k:

Note that sine u

1

2 V and f 2 H � V

0

we may view f as an element of V

0

and

estimate (f; u

1

) by kfk

�

ku

1

k. Applying Young's inequality gives

d

dt

ju

1

j

2

+ �ku

1

k

2

�

1

�

kfk

2

�

(2.16)

whih upon integrating in time yields

�

�

u

1

(t)

�

�

2

+ �

Z

t

0





u

1

(�)





2

d� � ju

0

j

2

+

1

�

Z

t

0





f(�)





2

�

d�:

After dropping the �rst term on the left, inequality (2.14) follows.

To derive the seond inequality, multiply (2.6) by Au

1

and use (2.9) to obtain

1

2

d

dt

ku

1

k

2

+ �jAu

1

j

2

= (f;Au

1

):

Applying Cauhy{Shwarz and Young's inequalities gives

d

dt

ku

1

k

2

+ �jAu

1

j

2

�

1

�

jf j

2

(2.17)

whih upon integrating in time yields





u

1

(t)





2

+ �

Z

t

0

�

�

Au

1

(�)

�

�

2

d� � ku

0

k

2

+

1

�

Z

t

0

�

�

f(�)

�

�

2

d�:

After dropping the �rst term on the left, inequality (2.15) follows.

3. Analytial Results for Continuous Data Assimilation

We treat the ontinuous data assimilation equations (1.6) as a funtional di�er-

ential equation in the same way that the Navier{Stokes equations (1.1) were treated

in the previous setion to obtain (2.6) to arrive at the oupled system

8

>

<

>

:

du

1

dt

+ �Au

1

+B(u

1

; u

1

) = f

du

2

dt

+ �Au

2

+B(u

2

; u

2

) = f + P

�

�

B(u

2

; u

2

)� B(u

1

; u

1

)

�

(3.1)
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with initial onditions u

1

(0) = u

0

and u

2

(0) = P

�

u

0

+ � where u

0

2 V and � 2 Q

�

V .

The solution to equation (3.1) may be viewed as two solutions u

1

and u

2

to the

Navier{Stokes equations (2.6) with orresponding foring f

1

and f

2

given by

f

1

= f and f

2

= f + P

�

�

B(u

2

; u

2

)�B(u

1

; u

1

)

�

: (3.2)

Note that the foring funtion f

2

as de�ned above is atually the projetion with

respet to P

�

of the funtion de�ned by (1.7) in the introdution. Sine f

2

is hosen in

a ompliated way depending on a feedbak with u

2

, it is not immediately lear that

the seond equation in (3.1) is globally well posed. This issue is settled by

Theorem 3.1. Let T > 0 and � � 0. If u

0

= u

1

(0) 2 V , � = Q

�

u

2

(0) 2 Q

�

V and

f 2 L

2

lo

�

(0;1);H

�

then (3.1) viewed as a system of funtional equations in H has a

unique strong solution that satis�es

u

i

2 L

1

�

(0; T );V

�

\ L

2

�

(0; T );D(A)

�

and

du

i

dt

2 L

2

�

(0; T );H

�

(3.3)

for i = 1; 2. Furthermore, the solutions are in C

�

[0; T ℄;V

�

and depend ontinuously

on the initial data u

0

and � in the V norm.

Proof: First we show existene of solutions. For u

1

this result follows from the

lassial theory of the Navier{Stokes equations given by Theorem 2.2. For u

2

we use

the the Galerkin method. Let P

n

be the n-th Galerkin projetor and assume that n

is large enough that P

�

H � P

n

H. The solution u

n

2

to the �nite-dimensional Galerkin

trunation of the seond equation in (3.1) satis�es

du

n

2

dt

+ �Au

n

2

+ P

n

B(u

n

2

; u

n

2

) = P

n

f + P

�

�

B(u

n

2

; u

n

2

)�B(u

1

; u

1

)

�

: (3.4)

Solutions to this ordinary di�erential equation exist for short times sine the non-

linearity is loally Lipshitz. Long time existene follows from the estimates we will

provide shortly. Moreover, sine these estimates are uniform in n, the ompatness

theorems of Aubin [1℄ an be used to extrat subsequenes as n ! 1 in suh a way

that u

n

2

onverges to a solution to (3.1) satisfying (3.3). Further details may be found,

for example, in [9℄, [16℄, [39℄, or [40, 41℄. As these tehniques are well known, we

shall ontent ourselves here with a formal alulation that ould be made rigorous if

so desired.

In the estimates that follow, we denote the Galerkin solution u

n

2

to (3.4) by u

2

for notational simpliity. Sine u

1

2 C

�

[0; T ℄;V

�

then there exists M

1

large enough

that





u

1

(t)





� M

1

for all t. The low modes P

�

u

2

(t) are bounded in any norm sine

all �nite dimensional norms are equivalent and P

�

u

2

(t) = P

�

u

1

(t). In partiular, the

Poinar�e inequality (2.4) implies that

�

�

AP

�

u

2

(t)

�

�

=

�

�

AP

�

u

1

(t)

�

�

� �

1=2





P

�

u

1

(t)





� �

1=2





u

1

(t)





� �

1=2

M

1

: (3.5)

In the ase that f is time independent then there are uniform estimates on

�

�

Au

1

(t)

�

�

for u

1

on the attrator, see, for example [9℄, [16℄, [39℄, or [40, 41℄. In this ase we ould

bound

�

�

AP

�

u

2

(t)

�

�

independently of �.
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Estimate the high modes Q

�

u

2

(t) by taking the inner produts of (3.4) with

AQ

�

u

2

to obtain

1

2

d

dt

kQ

�

u

2

k

2

+ �jAQ

�

u

2

j

2

= (f;AQ

�

u

2

)�

�

B(u

2

; u

2

); AQ

�

u

2

�

: (3.6)

The �rst term on the right side may be estimated using Cauhy{Shwarz and Young's

inequalities as

(f;AQ

�

u

2

) �

2

�

jf j

2

+

�

8

jAQ

�

u

2

j

2

:

To estimate the seond term use (2.9) and the bi-linearity repeatedly to obtain

�

�

B(u

2

; u

2

); AQ

�

u

2

�

=

�

B(u

2

; u

2

); AP

�

u

2

�

=

�

B(P

�

u

2

; u

2

); AP

�

u

2

�

+

�

B(Q

�

u

2

; u

2

); AP

�

u

2

�

=

�

B(Q

�

u

2

; P

�

u

2

); AP

�

u

2

�

+

�

B(P

�

u

2

; Q

�

u

2

); AP

�

u

2

�

+

�

B(Q

�

u

2

; Q

�

u

2

); AP

�

u

2

�

:

Now (2.13) and (2.3) followed by Young's inequality and then (3.5) yields

�

�

�

B(Q

�

u

2

; P

�

u

2

); AP

�

u

2

�

�

�

� 

1

jQ

�

u

2

j

1=2

kQ

�

u

2

k

1=2

kP

�

u

2

k

1=2

jAP

�

u

2

j

3=2

� 

1

�

�3=4

jAQ

�

u

2

jkP

�

u

2

k

1=2

jAP

�

u

2

j

3=2

�

2

2

1

��

3=2

kP

�

u

2

kjAP

�

u

2

j

3

+

�

8

jAQ

�

u

2

j

2

�

2

2

1

M

4

1

�

+

�

8

jAQ

�

u

2

j

2

:

The inequalities (2.13), (2.3) and (2.5) followed by Young's inequality and (3.5) yields

�

�

�

B(P

�

u

2

; Q

�

u

2

); AP

�

u

2

�

�

�

� 

1

jP

�

u

2

j

1=2

kP

�

u

2

k

1=2

kQ

�

u

2

k

1=2

jAQ

�

u

2

j

1=2

jAP

�

u

2

j

� 

1

�

�1=4

jP

�

u

2

j

1=2

kP

�

u

2

k

1=2

jAP

�

u

2

jjAQ

�

u

2

j

� 

1

�

�1=4

�

�1=4

1

kP

�

u

2

kjAP

�

u

2

jjAQ

�

u

2

j

�

2

2

1

��

1=2

�

1=2

1

kP

�

u

2

k

2

jAP

�

u

2

j

2

+

�

8

jAQ

�

u

2

j

2

�

�

2

2

1

M

4

1

�

�

�

1=2

�

1=2

1

+

�

8

jAQ

�

u

2

j

2

:

Finally (2.13) and (2.3) followed by Young's inequality and (3.5) yields

�

�

�

B(Q

�

u

2

; Q

�

u

2

); AP

�

u

2

�

�

�

� 

1

jQ

�

u

2

j

1=2

kQ

�

u

2

kjAQ

�

u

2

j

1=2

jAP

�

u

2

j

� 

1

�

�1=2

kQ

�

u

2

kjAQ

�

u

2

jjAP

�

u

2

j

�

2

2

1

��

kQ

�

u

2

k

2

jAP

�

u

2

j

2

+

�

8

jAQ

�

u

2

j

2

�

2

2

1

M

2

1

�

kQ

�

u

2

k

2

+

�

8

jAQ

�

u

2

j

2

:
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It follows that (3.6) beomes

d

dt

kQ

�

u

2

k

2

+ �jAQ

�

u

2

j

2

�

2

2

1

M

2

1

�

kQ

�

u

2

k

2

+

4

�

jf j

2

+ �

1

(3.7)

where the onstant

�

1

=

2

2

1

M

4

1

�

�

1 +

�

1=2

�

1=2

1

�

:

Applying (2.3) to the seond term on the left of (3.7) and regrouping yields

d

dt

kQ

�

u

2

k

2

+

n

���

2

2

1

M

2

1

�

o

kQ

�

u

2

k

2

�

4

�

jf j

2

+ �

1

:

This inequality may be written

d�

dt

+ �

2

� �

4

�

jf j

2

+ �

1

(3.8)

where

�

2

= ���

2

2

1

M

2

1

�

and � = kQ

�

u

2

k

2

:

Gronwall's inequality applied to (3.8) yields that

�(t) � �(0)e

��

2

t

+

�

1

�

2

�

1� e

��

2

t

�

+

4

�

Z

t

0

�

�

f(s)

�

�

2

e

��

2

(t�s)

ds: (3.9)

Sine f 2 L

2

lo

�

(0;1);H

�

it follows that





Q

�

u

2

(t)





2

is bounded for any interval [0; T ℄.

Hene u

2

2 L

1

�

(0; T );V

�

.

Next we show u

2

2 L

2

�

(0; T );D(A)

�

. Let M

2

be the bound exhibited above suh

that





u

2

(t)





2

�M

2

for all t in [0; T ℄. Substituting this bound into (3.7) obtains

d

dt

kQ

�

u

2

k

2

+ �jAQ

�

u

2

j

2

�

4

�

jf j

2

+ �

3

(3.10)

where

�

3

=

2

2

1

M

2

1

M

2

2

�

+ �

1

:

Gronwall's inequality applied to (3.10) yields





Q

�

u

2

(T )





2

+ �

Z

T

0

jAQ

�

u

2

j

2

�





Q

�

u

2

(0)





2

+

4

�

Z

T

0

jf j

2

+ T�

3

:

Upon dropping the �rst term on the left and majorizing the �rst term on the right by

M

2

2

it follows that

Z

T

0

jAQ

�

u

2

j

2

�

1

�

�

M

2

2

+

4

�

Z

T

0

jf j

2

+ T�

3

�

:
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Therefore u

2

2 L

2

�

(0; T );D(A)

�

.

The proof that du

2

=dt 2 L

2

�

(0; T );H

�

proeeds in exatly the same way as for

the two-dimensional Navier{Stokes equations. The Galerkin method then leads to the

existene of solutions to (3.1) satisfying (3.3).

Next, we show that suh solutions are unique and depend ontinuously on the

initial data. Let u

i

and v

i

be two solutions to (3.1) satisfying (3.3) for i = 1; 2 with

initial onditions in V suh that P

�

u

1

(0) = P

�

u

2

(0) and P

�

v

1

(0) = P

�

v

2

(0). Let the

onstants M

1

and M

2

be hosen large enough so that





u

i

(t)





�M

i

and





v

i

(t)





�M

i

for i = 1; 2 and almost every t in [0; T ℄. Let w

i

= u

i

�v

i

. Sine u

1

and v

1

are solutions

to the standard two-dimensional Navier{Stokes equations, then Theorem 2.2 implies





w

1

(t)





2

�  (t)





w

1

(0)





2

for t � 0 (3.11)

for some ontinuous monotone inreasing funtion  (t) with  (0) = 1. To obtain

similar estimates on w

2

, subtrat the equation for v

2

from the equation for u

2

. Thus,

dw

2

dt

+ �Aw

2

= P

�

�

B(v

1

; v

1

)� B(u

1

; u

1

)

�

+Q

�

�

B(v

2

; v

2

)� B(u

2

; u

2

)

�

:

Introduing �P

�

B(v

1

; u

1

) and �P

�

B(v

2

; u

2

) on the right side yields

dw

2

dt

+ �Aw

2

= �P

�

�

B(v

1

; w

1

) +B(w

1

; u

1

)

�

�Q

�

�

B(v

2

; w

2

) +B(w

2

; u

2

)

�

:

Sine w

2

2 L

2

�

0; T ;D(A)

�

and dw

2

=dt 2 L

2

�

0; T ;H) then the interpolation lemma of

Lions{Magenes [36℄ implies that

�

dw

2

dt

; Aw

2

�

=

1

2

d

dt

kw

2

k

2

:

See also Corollary 7.3 in [39℄ or Lemma 1.2 in [40℄. Now, taking inner produts with

Aw

2

and using the fat that P

�

w

2

= P

�

w

1

we obtain

1

2

d

dt

kw

2

k

2

+ �jAw

2

j

2

= �

�

B(v

1

; w

1

); P

�

Aw

1

�

�

�

B(w

1

; u

1

); P

�

Aw

1

�

�

�

B(v

2

; w

2

); Q

�

Aw

2

�

�

�

B(w

2

; u

2

); Q

�

Aw

2

�

:

(3.12)

By (2.12), (2.4) and (2.5) and then (3.11) we have

�

�

�

B(v

1

; w

1

); P

�

Aw

1

�

�

�

� jv

1

j

1=2

kv

1

k

1=2

kw

1

kjP

�

Aw

1

jkP

�

Aw

1

k

�

�

3=2

�

1=2

1

kv

1

kkw

1

k

2

�

�

3=2

�

1=2

1

M

1

 (t)





w

1

(0)





2

:

Similarly we estimate

�

�

�

B(w

1

; u

1

); P

�

Aw

1

�

�

�

� jw

1

j

1=2

kw

1

k

1=2

ku

1

kjP

�

Aw

1

jkP

�

Aw

1

k

�

�

3=2

�

1=2

1

ku

1

kkw

1

k

2

�

�

3=2

�

1=2

1

M

1

 (t)





w

1

(0)





2

:
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Using (2.13), Young's inequality and then (2.5) we estimate

�

�

�

B(v

2

; w

2

); Q

�

Aw

2

�

�

�

� jv

2

j

1=2

kv

2

k

1=2

kw

2

k

1=2

jAw

2

j

3=2

�

�

3

2�

�

3

1

4

jv

2

j

2

kv

2

k

2

kw

2

k

2

+

�

2

jAw

2

j

2

�

27

32�

3

M

4

2

�

1

kw

2

k

2

+

�

2

jAw

2

j

2

and also

�

�

�

B(w

2

; u

2

); Q

�

Aw

2

�

�

�

� jw

2

j

1=2

kw

2

k

1=2

ku

2

k

1=2

jAu

2

j

1=2

jAw

2

j

�

1

2�

jw

2

jkw

2

kku

2

kjAu

2

j+

�

2

jAw

2

j

2

�

1

2�

�

�1=2

1

kw

2

k

2

ku

2

kjAu

2

j+

�

2

jAw

2

j

2

�

1

4�

kw

2

k

2

n

M

2

2

+

1

�

1

jAu

2

j

2

o

+

�

2

jAw

2

j

2

:

Substituting these estimates into (3.12) we obtain

d

dt

kw

2

k

2

� �

4





w

1

(0)





2

+ �

5

kw

2

k

2

(3.13)

where

�

4

(t) = 4

�

3=2

�

1=2

1

M

1

 (t) and �

5

(t) =

1

2�

n

27M

4

2

8�

2

�

1

+M

2

2

+

1

�

1

�

�

Au

2

(t)

�

�

2

o

:

Gronwall's inequality applied to (3.13) yields that





w

2

(t)





2

�





w

2

(0)





2

exp

n

Z

t

0

�

5

(s)ds

o

+





w

1

(0)





2

Z

t

0

�

4

(�) exp

n

Z

t

�

�

5

(s)ds

o

d�:

Sine u

2

2 L

2

�

(0; T );D(A)

�

then ontinuity with respet to the initial onditions

follows. In partiular, solutions of (3.1) satisfying (3.3) are unique.

Note that the bounds in (3.9) are not uniform in time unless �

2

> 0. This implies

that � must be suÆiently large for us to prove that the system (3.1) is dissipative. A

slightly sharper result than the one whih results from the above observation appears

as Theorem 3.5 at the end of this setion.

The uniqueness given by Theorem 3.1 guarantees that if u

1

(t) and u

2

(t) happen

to agree at some point in time, then they will remain equal for all subsequent times.

In partiular, if � = Q

�

u

0

then u

1

(t) = u

2

(t) for all t. The following lemma establishes

bounds on the onvergene of ontinuous data assimilation in terms of time averages
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of the referene alulation u

1

. As � inreases, the resolution of the measurements

beomes �ner. Therefore, we expet that u

2

(t) beomes a better and better approxi-

mation of u

1

(t) as �!1.

Lemma 3.2. Let u

1

(t) and u

2

(t) be the unique strong solutions to (3.1) with u

0

=

u

1

(0) 2 V , � = Q

�

u

2

(0) 2 Q

�

V and f 2 L

2

lo

�

(0;1);H

�

given by Theorem 3.1. Then

�

�

u

1

(t)� u

2

(t)

�

�

2

�

�

�

u

1

(0)� u

2

(0)

�

�

2

exp

n

� ��t+



2

1

�

Z

t

0





u

1

(�)





2

d�

o

(3.14)

and





u

1

(t)� u

2

(t)





2

�





u

1

(0)� u

2

(t)





2

exp

n

� ��t+



2

1

��

Z

t

0

�

�

Au

1

(�)

�

�

2

d�

o

: (3.15)

Proof: Let Æ = u

1

�u

2

. Subtrat the seond equation in (3.1) from the �rst to obtain

dÆ

dt

+ �AÆ +Q

�

�

B(u

1

; u

1

)� B(u

2

; u

2

)

�

= 0: (3.16)

Introdue �Q

�

B(u

2

; u

1

) and further introdue �Q

�

B(u

1

; Æ) into (3.16) to obtain

dÆ

dt

+ �AÆ +Q

�

�

B(Æ; u

1

) + B(u

1

; Æ)� B(Æ; Æ)

�

= 0: (3.17)

We shall make two estimates showing the onvergene of Æ to zero. First, we �nd

onditions under whih

�

�

Æ(t)

�

�

! 0 as t ! 1, and seond, we �nd onditions under

whih





Æ(t)





! 0 as t!1.

We obtain estimates on jÆj by multiplying (3.17) by Æ and integrating. Sine

Q

�

Æ = Æ it follows from (2.8) that

1

2

d

dt

jÆj

2

+ �kÆk

2

+

�

B(Æ; u

1

); Æ

�

= 0: (3.18)

Inequality (2.12) followed by Young's inequality yields

�

�

�

B(Æ; u

1

); Æ

�

�

�

� 

1

jÆjkÆkku

1

k �



2

1

2�

jÆj

2

ku

1

k

2

+

�

2

kÆk

2

: (3.19)

Substituting (3.19) into (3.18) obtains

d

dt

jÆj

2

+ �kÆk

2

�



2

1

�

jÆj

2

ku

1

k

2

:

Applying (2.3) to the seond term on the left yields

d

dt

jÆj

2

+

n

���



2

1

�

ku

1

k

2

o

jÆj

2

� 0: (3.20)
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Now, Gronwall's inequality yields

�

�

Æ(t)

�

�

2

�

�

�

Æ(0)

�

�

2

exp

n

� ��t+



2

1

�

Z

t

0





u

1

(�)





2

d�

o

Next, we obtain estimates on kÆk by taking the L

2

inner produt of (3.17) with

AÆ. Sine Q

�

AÆ = AÆ it follows from (2.9) that

1

2

d

dt

kÆk

2

+ �jAÆj

2

+

�

B(u

1

; Æ); AÆ

�

+

�

B(Æ; u

1

); AÆ

�

= 0:

Further applying (2.10) obtains

1

2

d

dt

kÆk

2

+ �jAÆj

2

=

�

B(Æ; Æ); Au

1

�

: (3.21)

Estimate using (2.12) followed by (2.3) and then Young's inequality as

�

�

�

B(Æ; Æ); Au

1

�

�

�

� 

1

jÆj

1=2

kÆkjAÆj

1=2

jAu

1

j

� 

1

�

�1=2

kÆkjAÆjjAu

1

j

�



2

1

2��

kÆk

2

jAu

1

j

2

+

�

2

jAÆj

2

:

Then substitute this estimate into (3.21) to obtain

d

dt

kÆk

2

+ �jAÆj

2

�



2

1

��

kÆk

2

jAu

1

j

2

:

Applying (2.3) to the seond term on the left yields

d

dt

kÆk

2

+

n

���



2

1

��

jAu

1

j

2

o

kÆk

2

� 0: (3.22)

Now, Gronwall's inequality yields





Æ(t)





2

�





Æ(0)





2

exp

n

� ��t+



2

1

��

Z

t

0

�

�

Au

1

(�)

�

�

2

d�

o

:

This �nishes the proof of the lemma.

Combining Lemma 3.2 with Lemma 2.4 we obtain rigorous onditions on � in

terms of f and � whih ensure that ontinuous data assimilation works. Namely, we

prove the following version of Theorem 1.5.

Theorem 3.3. Let

M

1

=

n

sup

t>0

1

t

Z

t

0





f(�)





2

�

d�

o

1=2

and M

2

=

n

sup

t>0

1

t

Z

t

0

�

�

f(�)

�

�

2

d�

o

1=2

:
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Then, given a bounded subset B

0

� V and f 2 L

2

lo

�

(0; T );H

�

with M

2

< 1, there

exists K

1

and K

2

large enough suh that for every u

0

= u

1

(0) 2 B

0

and � = Q

�

u

2

(0) 2

Q

�

V the solutions u

1

(t) and u

2

(t) to (3.1) satisfy

(i) If there exists � suh that 0 < 2� � ��� 

2

1

�

�3

M

2

1

then

�

�

u

1

(t)� u

2

(t)

�

�

�

�

�

u

1

(0)� u

2

(0)

�

�

K

1

e

��t

for t � 0:

(ii) If there exists � suh that 0 < 2� � ��� 

2

1

(�

3

�)

�1

M

2

2

then





u

1

(t)� u

2

(t)





�





u

1

(0)� u

2

(0)





K

2

e

��t

for t � 0:

Proof: Let Æ = u

1

� u

2

. To estimate

�

�

Æ(t)

�

�

substitute (2.14) from Lemma 2.4 into

(3.14) from Lemma 3.2 to obtain

�

�

Æ(t)

�

�

2

�

�

�

Æ(0)

�

�

2

exp

�

� ��t+

t

2

1

�

�

1

�t

ju

0

j

2

+

1

�

2

M

2

1

�

�

�

�

�

Æ(0)

�

�

2

exp

n



2

1

�

2

ju

0

j

2

o

exp

�

�

� ��+



2

1

�

3

M

2

1

�

t

�

:

It follows that, if 0 < 2� � �� � 

2

1

�

�3

M

2

1

then

�

�

Æ(t)

�

�

�

�

�

Æ(0)

�

�

K

1

e

��t

where K

1

is

hosen large enough suh that

K

1

� exp

n



2

1

2�

2

ju

0

j

2

o

for all u

0

2 B

0

:

To estimate





Æ(t)





substitute (2.15) from Lemma 2.4 into (3.15) from Lemma 3.2

to obtain





Æ(t)





2

�





Æ(0)





2

exp

�

� ��t+

t

2

1

��

�

1

�t

ku

0

k

2

+

1

�

2

M

2

2

�

�

�





Æ(0)





2

exp

n



2

1

�

2

�

ku

0

k

2

o

exp

�

�

� ��+



2

1

�

3

�

M

2

2

�

t

�

:

It follows that, if 0 < 2� � ��� 

2

1

(�

3

�)

�1

M

2

2

then





Æ(t)





�





Æ(0)





K

2

e

��t

where K

2

is hosen large enough suh that

K

2

� exp

n



2

1

2�

2

�

ku

0

k

2

o

for all u

0

2 B

0

:

This �nishes the proof.

Corollary 3.4. Under the hypothesis of Theorem 3.3 the approximation u

2

onverges

to u

1

in L

1

�

[0;1℄;V

�

as �!1.

Proof: Sine K

2

in Theorem 3.3 may be hosen independently of � then





u

1

(t)� u

2

(t)





�





u

1

(0)� u

2

(0)





K

2

e

��t

� K

2





Q

�

(u

0

� �)





! 0
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as �!1.

Proof of Theorem 1.5. Notie in the ase f is time-independent thatM

1

= kfk

�

and

M

2

= jf j in Theorem 3.3. The proof of Theorem 1.5 then follows from Theorem 3.3

and the fat that the global attrator of (2.6) is bounded in V .

Note that any bounds on the ritial value of � for whih ontinuous data as-

similation works must remain invariant under the saling presented in (1.8) in order

to be sharp. Sine all wave numbers in the original Fourier spae are doubled upon

setting ~u

1

(x; t) = 2u

1

(2x; 4t) and

~

f(x) = 8f(2x), then the observational measurements

P

~

�

~u

1

(t) are equivalent to P

�

u

1

(t) exatly when

~

� = 4�.

Assume, �rst, that there is a bound on � in terms of kfk

�

whih is sharp. In

partiular, suppose � � Ckfk

�

�

for some onstants C and �. Sine k

~

fk

�

= 4kfk

�

then

rewriting

~

� � Ck

~

fk

�

�

in terms of � and f yields 4� � 4

�

Cjf j

�

. It follows that � = 1

and therefore � � Ckfk

�

. However, the �rst bound in Theorem 3.3 depends on kfk

2

�

,

therefore it ould not be sharp. Similarly, if � � Cjf j

�

, then resaling

~

� � Cj

~

f j

�

yields 4� � C8

�

j

~

f j

�

. It follows, in this ase, that � = 2=3 and so � � Cjf j

2=3

. Thus,

both of the results in Theorem 3.3 are only upper bounds.

We end this setion with a result on the dissipativity of the ontinuous data

assimilation equations (3.1). Whether this system of equations is dissipative for all, in

partiular smaller, values of � appears to be an interesting open question.

Theorem 3.5. Given foring f 2 H and provided that � satis�es (1.10), then the

system of equations (3.1) is dissipative and has an absorbing ball in V .

Proof: Sine u

1

satis�es the usual two-dimensional Navier{Stokes equations with

foring f 2 H then it has an absorbing ball in V . See, for example, [9℄, [16℄, [39℄ or

[40, 41℄. For u

2

we use Theorem 3.3 to estimate f

2

and use that estimate to �nd an

absorbing ball.

Let Æ(t) = u

1

(t)� u

2

(t). Then (2.4) implies

jf

1

� f

2

j �

�

�

P

�

B(u

2

; u

2

)� P

�

B(u

1

; u

1

)

�

�

�

�

�

P

�

B(Æ; Æ)

�

�

+

�

�

P

�

B(u

1

; Æ)

�

�

+

�

�

P

�

B(Æ; u

1

)

�

�

� �

3=2

�

kB(Æ; Æ)k

�3

+ kB(u

1

; Æ)k

�3

+ kB(Æ; u

1

)k

�3

	

:

For w 2 V

3

the Sobolev embedding krwk

L

1

� Ckwk

3

yields the estimates

�

�




B(Æ; Æ); w

�

�

�

=

�

�




B(Æ; w); Æ

�

�

�

� krwk

L

1

jÆj

2

� Ckwk

3

jÆj

2

�

�




B(u

1

; Æ); w

�

�

�

=

�

�




B(u

1

; w); Æ

�

�

�

� krwk

L

1

ju

1

jjÆj � Ckwk

3

ju

1

jjÆj

�

�




B(Æ; u

1

); w

�

�

�

=

�

�




B(Æ; w); u

1

�

�

�

� krwk

L

1

ju

1

jjÆj � Ckwk

3

ju

1

jjÆj:

If � satis�es inequality (1.10) then Theorem 3.3 implies

�

�

Æ(t)

�

�

! 0 as t!1. Thus,

jf

1

� f

2

j � C�

3=2

�

jÆj

2

+ 2ju

1

jjÆj

	

! 0 as t!1: (3.23)

This implies that f

2

has the same asymptoti bounds in time as f .
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Now, Theorem 3.3 implies that for any bounded subset B

0

� V there exists a

time s > 0 suh that for every u

0

2 B

0

and � 2 Q

�

V the orresponding f

2

obeys

�

�

f

2

(t)

�

�

� 2jf j for t > s:

Let

B

1

= fu

2

(s) : u

0

2 B

0

and � 2 Q

�

B

0

g:

Continuous dependene on the initial data given by Theorem 3.1 implies that B

1

is

bounded in V . Denote that bound by M

1

. We now estimate





u

2

(t)





.

Multiply the seond equation in (3.1) by Au

2

to obtain

1

2

d

dt

ku

2

k

2

+ �jAu

2

j

2

= (f

2

; Au

2

):

Applying Cauhy-Shwarz and Young's inequalities gives

d

dt

ku

2

k

2

+ �jAu

2

j

2

=

1

�

jf

2

j

2

:

Applying the Poinar�e inequality (2.5) to the seond term on the right yields

d

dt

ku

2

k

2

+ ��

1

ku

2

k

2

=

1

�

jf

2

j

2

and integrating over the interval [s; t℄ obtains





u

2

(t)





2

�





u

2

(s)





2

e

���

1

(t�s)

+

1

�

Z

t

s

e

���

1

(t��)

�

�

f

2

(�)

�

�

2

d�

�M

2

1

e

���

1

(t�s)

+

2jf j

2

�

2

�

1

n

1� e

���

1

(t�s)

o

:

Therefore, there exists T > s large enough suh that for every u

0

2 B

0

and � 2 Q

�

B

0

the solution u

2

to the seond equation in (3.1) satis�es

ku

2

(t)k

2

�

3jf j

2

�

2

�

1

for t > T:

Thus, equations (3.1) are dissipative.

Note that (3.23) shows in the ase of ontinuous data assimilation that

�

�

u

1

(t) �

u

2

(t)

�

�

! 0 as t!1 implies

�

�

f

1

(t)�f

2

(t)

�

�

! 0 as t!1. This same impliation does

not hold for two solutions u

1

and u

2

of the Navier{Stokes equations with respetive

time-dependent foring funtions f

1

and f

2

in general. Consider the following simple

example. Let

u

1

=

�

0

(t+ 1)

�1

sin(t+ 1)

2

�

os(x)
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and

u

2

=

�

(t+ 1)

�1

os(t+ 1)

2

0

�

os(y):

Then u

1

and u

2

are solutions of (2.6) with

f

1

=

�

0

2 os(t+ 1)

2

� (t+ 1)

�2

sin(t+ 1)

2

+ �(t+ 1)

�1

sin(t+ 1)

2

�

os(x)

and

f

2

=

�

�2 sin(t+ 1)

2

� (t+ 1)

�2

os(t+ 1)

2

+ �(t+ 1)

�1

os(t+ 1)

2

0

�

os(y):

Clearly





u

1

(t)� u

2

(t)





�

! 0 as t!1 for any �, however

jf

1

� f

2

j

2

= jf

1

j

2

+ jf

2

j

2

� 4 as t!1:

Therefore,

�

�

f

1

(t)�f

2

(t)

�

�

need not onverge to zero as t!1 even though





u

1

(t)�

u

2

(t)





�

! 0 as t ! 1 for any �. This implies that Theorem 1.4, Theorem 1.5 and

Theorem 3.3 over situations where the hypothesis of Theorem 1.3 are violated. Similar

examples an be onstruted using spatial osillations whose length sales derease over

time. For these examples ku

1

� u

2

k ! 0 but jQ

�

f

1

�Q

�

f

2

j does not onverge to zero

for any �.

4. Numerial Results

In this setion we study numerially how the length sales present in the foring fun-

tion f a�et the rate of ontinuous data assimilation and the number of determining

modes. It is worth mentioning that almost all the previous analytial studies onern-

ing the number of degrees of freedom in turbulent ow have foused on the Grashof

number and almost none have addressed the e�et of the spatial struture of the foring

on the dynamis. However, there were some omputational results that took the stru-

ture of the foring into onsideration. See, for example, the work of Marhioro [37℄,

Jolly [29℄, Platt, Sirovih and Fitzmaurie [38℄ and referenes therein.

Let G(R) and F(�

f

) be as given in the introdution. Thus, G(R) is the set of all

time-independent foring funtions f with Grashof number Gr(f) = R and F(�

f

) is the

subset of G(R) onsisting of the time-independent foring funtions that are supported

on an annulus in Fourier spae entered at �

f

of the form (1.11). All omputational

experiments were performed with � = 0:0001 and � = 0 on the 2�-periodi torus for

foring funtions with a Grashof number of R = 250000. Our omputational results

onsist of two sets of experiments.

For our �rst experiment we selet funtions from F(�

f

) for values of �

f

ranging

from 25 through 625. We work in the vortiity representation. Thus, any f 2 F(�

f

)

may be spei�ed in terms of g = r� f aording to

^

f

k

=

ĝ

k

k

2

1

+ k

2

2

�

�ik

2

ik

1

�

where g =

X

�

m

�k

2

��

M

ĝ

k

�

k

: (4.1)
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To obtain a representative funtion f 2 F(�

f

) for eah value of �

f

under onsideration,

we take the Fourier oeÆients g

k

to be Gaussian distributed, subjet to the reality

ondition ĝ

k

= ĝ

�k

and normalized so that jf j = 0:0025.

The initial ondition u

0

for eah ontinuous data assimilation experiment was

hosen so that it faithfully reets the long term energetis of the foring. This was

done by integrating the Navier{Stokes equations (2.6) starting at time t = �25000

with u

1

(�25000) = 0 until time t = 0. Figure 1 shows the time evolution of ku

1

k,

ju

1

j and ku

1

k

�

for a foring funtion with �

f

= 25. By the end of the run these

quantities have reahed their statistially stationary states. Thus, one an assume

that u

0

= u

1

(0) is on the attrator. We note that as long as u

0

reets the long term

energetis of the foring the exat method of its hoie is not important.

Given a partiular foring funtion and initial ondition u

0

the data assimilation

parameter � for P

�

in (3.1) was then varied to determine its e�et on the time evo-

lution of ku

1

� u

2

k. As suggested by the bounds in Theorem 3.3 and illustrated in

Figure 2, onvergene, when it ours, is exponential in time. Although onvergene

is not always monotoni, it is, on average, exponential. Therefore, a least squares

�t of A exp(��t) to ku

1

� u

2

k was made for eah omputation to obtain the rate of

ontinuous data assimilation �. Values of � as a funtion of � are given in Figure 3

for the experiments with �

f

� 361 and in Figure 4 for the experiments with �

f

� 361.

To provide a de�nite numerial riterion for deduing the number of determining

modes, let �



be the smallest value of � for whih the orresponding rate of ontinuous

data assimilation � satis�es � � 0:0005. We take the number of determining modes N



to be the rank of P

�

for � = �



. Table 1 summarizes how the number of determining

modes depends on the length sales present in the foring. Notie that the number of

determining modes inreases as �

f

inreases from 25 through 361 but then dereases as

�

f

inreases from 361 through 625. We remark that the distanes between suessive

values of �

f

have been hosen to be spaed far enough apart to guarantee that kfk

�

will derease monotonially as �

f

inreases.

To ompare these results with our theory, substitute (1.12) into (1.10) and use

the bounds on 

1

given in Lemma 2.3 to obtain

�



� min

�



2

1

�

�4

kfk

2

�

; 

1

�

�2

jf j

	

� 

1

�

�2

jf jmin

�



1

�

�2

jf j(�

1=2

f

� 1)

�2

; 1

	

� 539789min

�

539789(�

1=2

f

� 1)

�2

; 1

	

:

Hene, when �

f

� 541260 the �rst term in the minimum dominates, and our analytial

bound on �



and onsequently on N



dereases as �

f

inreases. In partiular, our

analytial estimate on the number of determining modes reahes zero for �

f

large

enough. Although our omputational estimates are muh smaller and start dereasing

long before our theoretial bounds do, it seems reasonable that the observed derease

in number of determining modes when foring on smaller and smaller sales is still

explained by the smallness of the V

0

norm of f when �

f

is large.

Something unexplained by our analysis appears to be happening for values of �

f

between 25 and 361. The number of determining modes inreases as �

f

inreases. In
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an intuitive sense, this an be seen as an extrapolation of the fat that when �

f

= 0:7

Theorem 1.7 implies that the dynamis are trivial. To shed further light on this ase

let us �rst examine the energy spetra of the referene alulations. Let

E(r) = L

2

X

k2J

r

jû

k

j

2

where J

r

=

�

k 2 J : r � 1=2 < jkj � r + 1=2

	

and de�ne




E(r)

�

= lim

T!1

1

T

Z

T

0

E(r) dt:

The average energy spetrum of the referene alulation u

1

orresponding to eah of

the foring funtions in Table 1 is shown in Figure 5. Here we have estimated the limit

at T ! 1 by taking T = 10000. Note that as �

f

inreases, the amount of energy in

the high modes inreases and a peak around �

f

beomes apparent. Also note that the

total energy in the low modes dereases as �

f

inreases.

Thus, there are two plausible explanations for the observed inrease in the number

of determining modes as �

f

ranges from 25 to 361. This inrease might be aused by

an inreases of energy in the high modes of u

1

or it might be aused by a derease of

energy in the low modes. If we suppose that the small sales are generated from the

large sales, then a derease of energy in the low modes would leave less large sale

motion to generate the small sales, and therefore lead to an inrease in the number of

determining modes. To test this hypothesis a seond set of experiments was onduted.

Given f

L

2 F(25) and f

H

2 F(484) we set f = �

L

f

L

+ �

H

f

H

where �

2

L

+ �

2

H

= 1.

In this way we obtain foring funtions that are supported on two disjoint annuli in

Fourier spae|one on small wave numbers, the other on large. Here �

L

and �

H

are

parameters determining the relative weights of the large and small length sales in the

foring. When �

H

is lose to zero f may be viewed as the perturbation of the large

sales f

L

by the small sales f

H

; when �

L

is lose to zero f is the perturbation of the

small sales f

H

by the large sales f

L

. The values of � for these omputations are

presented graphially in Figure 6. Table 2 indiates how the number of determining

modes depends on �

L

and �

H

. Note that the perturbation of the large sales f

L

by

the small sales f

H

does not signi�antly hange the number of determining modes,

whereas the perturbation of the small sales f

H

by the large sales f

L

dramatially

a�ets the number of determining modes. This is onsistent with our hypothesis that

it is the absene of the large sales in the foring whih are primarily responsible for

the inrease in number of determining modes as �

f

ranges from 25 through 361 in the

�rst set of experiments.

Further evidene in support of this hypothesis may be obtained by examining the

averaged energy spetrum in Figure 7 of the referene alulation u

1

orresponding to

eah of the foring funtions in Table 2. The most dramati hanges in the number of

determining modes orresponds primarily to hanges in the energy of the low modes

of the energy spetrum.

It is amusing to note that the �rst three olumns in Table 2 are qualitatively un-

hanged by taking �

H

= 1 in eah of them. In this ase we obtain a sequene of foring
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funtions that inreases in all norms while at the same time the orresponding number

of determining modes derease. A disussion of this seeming paradox and an expla-

nation for it in terms of a Reynolds number based on the observational measurements

P

�

u

1

(t) shall be explored, if eÆable, in a future work.

5. Computational Methods

Numerial omputations for this paper were arried out using a C ode written by the

authors in onjuntion with the Fourier transform library of Frigo and Johnson [26℄.

The atual alulations were made on miroomputers running the GNU/Linux oper-

ating system and LAM/MPI at the University of Nevada, Reno and at the University

of California, Irvine. Corret behavior of our ode was veri�ed by omparison to

existing programs written by Mike Jolly and Stephen Montgomery.

We use a spetral Galerkin method and ompute the two-dimensional inompress-

ible Navier{Stokes equations in its vortiity form

�!

�t

� ��! + (u � r)! = g (5.1)

where ! = r�u and g = r� f . Note that the one-third rule was used avoid aliasing,

see Canuto, Hussaini, Quarteroni and Zang [3℄. In terms of its Fourier deomposition

(5.1) beomes

d!̂

k

dt

+ �k

2

!̂

k

+ ik � u!

k

= ĝ

k

: (5.2)

Following Henshaw, Kreiss and Reyna in [27℄, we integrate the dissipative term

expliitly to obtain

d

dt

n

!̂

k

exp(�k

2

t)

o

+ ik � u!

k

exp(�k

2

t) = ĝ

k

exp(�k

2

t) (5.3)

and then integrate the remaining terms using a third order Adams{Bashforth sheme.

Initial time steps are omputed via a fourth order Runge{Kutta sheme.

Let ŵ

j

denote the Fourier transformed vortiity at time t

j

= j�t. Let

� = diag

�

: : : ; �(k

2

1

+ k

2

2

); : : :

�

and

F (t; ŵ) = �ik � u!

k

+ ĝ

k

:

Using these notations, the fourth order Runge-Kutta sheme used in our alulations

may be written

K

1

= F (t

j

; ŵ

j

)

K

2

= F

�

t

j

+�t=2; e

���t=2

(ŵ

j

+K

1

�t=2)

�

K

3

= F

�

t

j

+�t=2; e

���t=2

ŵ

j

+K

2

�t=2

�

K

4

= F

�

t

j

+�t; e

���t

ŵ

j

+ e

���t=2

K

3

�t

�

ŵ

j+1

= e

���t

ŵ

j

+ (�t=6)

�

e

���t

K

1

+ 2e

���t=2

(K

2

+K

3

) +K

4

�
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and the third order Adams{Bashforth sheme may be written

ŵ

j+1

= e

���t

ŵ

j

+

�t

12

n

23e

���t

F (t

j

; ŵ

j

)

� 16e

�2��t

F (t

j�1

; ŵ

j�1

)

+ 5e

�3��t

F (t

j�2

; ŵ

j�2

)

o

:

In our analysis, the foring funtion f and the dynamial equations governing

the evolution of u

1

were assumed to be known exatly. Furthermore, the observable

measurements P

�

u

1

(t) were assumed to be error free. Therefore, if u

1

(t) and u

2

(t)

happen to be equal at any time t, then they will remain equal for all subsequent times.

We would like our numerial omputations to reet these assumptions as losely

as possible. To ensure our omputations of u

1

and u

2

are idential, we disretize the

equations governing u

1

and u

2

in exatly the same way and use the same exeutable

program to ompute eah solution. This avoids any variations in automati ompile-

time optimizations. Furthermore, we expliitly speify the proessor dependent run-

time optimizations used by the Fourier transform library [26℄. Additional are was

taken when implementing the ontinuous data assimilation to ensure that the exat

values of P

�

u

1

were used in a way that doesn't a�et the disrete dynamis. Thus, sine

we are using a three step method for the time integrator, if the numerial solutions

u

1

(t) and u

2

(t) are bit for bit equal at any three onseutive times t

j

, t

j�1

and t

j�2

,

then they will remain bit for bit equal for all subsequent times.

To ensure suÆient omputational resolution and stability, the CFL ondition and

the ondition on the degrees of freedom in two-dimensional turbulene given in [27℄

were monitored for all omputational runs. Let n by n be the grid size in physial

spae and �t be the size of the time step. Let u and v be the x and y omponents of

Eulerian veloity �eld. The CFL ondition may be expressed as

CFL =

n�t

2L

sup

x2


�

juj+ jvj

	

� 1

and the ondition on degrees of freedom may be expressed as

k

max

= �

�1=2

sup

x2


�

�

�

�

�u

�x

�

�

�

;

�

�

�

�v

�x

�

�

�

;

�

�

�

�u

�y

�

�

�

;

�

�

�

�v

�y

�

�

�

�

1=2

�

n�

L

:

For our �nal alulations we took � = 0:0001, L = 2�, n = 169 and �t = 0:04.

Thus, the Fourier transforms used to evaluate the non-linear term were performed on

a 256 by 256 spatial grid. Given these parameters, our �nal alulations obeyed

CFL � 0:92 and k

max

� 82

and should, therefore, be well resolved.

Dependene of our numerial results on resolution was also studied diretly. It

should be noted that our experiment involves integrating a system with sensitive de-

pendene on its initial onditions over a very long period of time. Thus, given di�erent
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values for n and �t otherwise idential alulations of u

1

will di�er after long enough

time. Even for idential values of n and �t these alulations were observed to di�er

depending on the ompiler and level of optimization used. The best we an hope for

is that statistial properties inluding the rate of ontinuous data assimilation and

number of determining modes remain unhanged. A number of preliminary tests with

f , � and u

0

�xed were made to determine how our results depend on the exat values

of n and �t. Figure 9 illustrates the evolution of ku

1

� u

2

k for a set of resolution

tests. These tests were onduted with the data assimilation parameter � = 26 and

the foring funtion from Table 1 with �

f

= 64. It is lear that the rate of ontinuous

data assimilation is independent of the resolution of the omputation. Thus, we hope

that our results are reasonably free from numerial artifats.

Reall that the amplitudes of the Fourier omponents of f were hosen randomly

with respet to a Gaussian distribution. Thus, our exat hoie of f for eah exper-

iment was somewhat arbitrary. Table 3 explores for �

f

= 64 how the randomness in

our hoie of Fourier omponents for f a�et the rate of ontinuous data assimilation.

Notie that the V and V

0

norms of f vary by about one perent while the resulting

rate of ontinuous data assimilation � varies by about three perent. We suppose all

our results are within this margin for any reasonably probable hoie of f .

Table 3. Di�erent versions of foring funtions supported

on the length sales around �

f

= 64. The rate � was mea-

sured for ontinuous data assimilation on N = 88 modes.

Version kfk jf j kfk

�

�

1 0.01928 0.0025 0.0003272 0.0105127

2 0.01905 0.0025 0.0003309 0.0102093

3 0.01921 0.0025 0.0003287 0.0099258

4 0.01923 0.0025 0.0003282 0.0104484

5 0.01919 0.0025 0.0003292 0.0112591

An essential feature of a typial foring funtion is that the spatial length sales

are learly exhibited while at the same time there are no additional symmetries. This

feature is illustrated in Figure 8 whih gives the onstant level urves of r� f for the

foring funtion with �

f

= 64 from Table 1. If, for example, f had additional periodi

struture, then the initial ondition u

0

and onsequently u

1

and u

2

would also have

this periodi struture. Thus, a resaling suh as in (1.8) would be possible. One ould

not expet the results from Table 1 to be relevant for suh foring funtions.

One �nal remark is on our proedure for determining �



experimentally. Reall

that �



was de�ned to be the smallest value of � suh that � � 0:0005. This uto�

was hosen simply so that the evolution of ku

1

� u

2

k need not be omputed for times

muh greater than t = 25000 to distinguish ases of onvergene from non-onvergene.

Therefore, it is possible that smaller values of � would also show onvergene. In suh

ases our �



still provides an upper bound on the number of determining modes, only

perhaps not quite as sharp as possible.
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Figure 1. Evolution of ku

1

k, ju

1

j and ku

1

k

�

for �

f

= 25

shows that initial data for the ontinuous data assimilation

experiment is very lose to the global attrator.
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Figure 2. Evolution of ku

1

�u

2

k with �

f

= 64 for ontin-

uous data assimilation on N Fourier modes. Convergene,

when it ours, is exponential in time.
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Figure 3. Rate of ontinuous data assimilation for for-

ing supported on length sales between �

f

= 25 and 361.

The horizontal line at � = 0:0005 represents the uto� for

deduing the number of determining modes.
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Figure 4. Rate of ontinuous data assimilation for foring

supported on length sales between �

f

= 361 and 625.

The horizontal line at � = 0:0005 represents the uto� for

deduing the number of determining modes.
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Figure 5. Time averages of the energy spetrum of u

1

show a harateristi peak around �

f

for foring funtions

supported on small length sales. The average was om-

puted by taking T = 10000.
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Figure 6. Rate of ontinuous data assimilation for the

foring funtion f = �

L

f

L

+ �

H

f

H

where f

L

2 F(25) and

f

H

2 F(484). The horizontal line at � = 0:0005 represents

the uto� for deduing the number of determining modes.
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Figure 7. Time averages of the energy spetrum of u

1

for

f = �

L

f

L

+ �

H

f

H

where f

L

2 F(25) and f

H

2 F(484).

The average was omputed by taking T = 10000.
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Figure 8. Constant level urves of g = r� f for �

f

= 64

illustrate the length sales present in the foring.
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Figure 9. The evolution of ku

1

� u

2

k for di�erent values

of n and �t with � = 26 and �

f

= 64 shows that the rate of

ontinuous data assimilation is unrelated to the numerial

resolution. The solid line represents the resolution of our

�nal alulations. Other resolutions have been o�set by

deades for larity.
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