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We study the number of determining modes ne
essary for 
ontinuous data

assimilation in the two-dimensional in
ompressible Navier{Stokes equations.

Our fo
us is on how the spatial stru
ture of the body for
ing a�e
ts the rate

of 
ontinuous data assimilation and the number of determining modes. These

quantities are shown to depend strongly on the length s
ales present in the

for
ing.

Dedi
ated to the memory of Os
ar P. Manley

1. Introdu
tion

In the late 1960s satellite-borne observation systems began produ
ing data on the


limate that was nearly 
ontinuous in time. Charney, Halem and Jastrow proposed

in [5℄ that the equations of the atmosphere themselves be used to pro
ess this data

and obtain improved estimates of the 
urrent atmospheri
 state. Their method, 
alled


ontinuous data assimilation, is to insert the observational measurements dire
tly into

a model as the latter is being integrated in time. A summary of the use of 
ontinuous

data assimilation in pra
ti
al weather fore
asting appears in Daley [12℄.

Let u

1

(t) represent physi
al reality at time t. We represent the observational

measurements 
orresponding to u

1

(t) at time t by P

�

u

1

(t), where P

�

is a �nite-rank

orthogonal proje
tion. Here � represents a parameter, namely the resolution of the

measuring equipment, that will be made pre
ise later. Let u

2

(t) be the approximation

to u

1

(t) obtained from 
ontinuous data assimilation of the observational measurements

P

�

u

1

(�) over the time interval � 2 [0; t℄. We will des
ribe the details of 
onstru
ting

u

2

(t) later. Our goal is to �nd 
onditions on � in terms of the other physi
al parameters

of the system whi
h guarantee that u

2

(t) will 
onverge to u

1

(t) as t!1. Note that

we assume the idealized situation in whi
h the observational measurements P

�

u

1

(t)

are error free; therefore, there is no need for the additional �ltering ne
essary in

appli
ations.

Inspired by the work of Browning, Henshaw and Kreiss [2℄ and motivated by

appli
ations involving the full dynami
s of the atmosphere, we study 
ontinuous data
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assimilation in the simpler 
ase of a vis
ous two-dimensional in
ompressible 
uid in a

periodi
 domain. Thus, we take the physi
al reality u

1

(t) to be the exa
t solution of

the two-dimensional in
ompressible Navier{Stokes equations

�u

1

�t

+ (u

1

� r)u

1

� ��u

1

+r�

1

= f; r � u

1

= 0 (1.1)

with initial 
onditions u

1

(0) = u

0

on the L-periodi
 torus 
 = [0; L℄

2

. Here u

1

represents the Eulerian velo
ity �eld, � the kinemati
 vis
osity, f a body for
ing and

�

1

the physi
al pressure.

It is 
lear from (1.1) that if

R




u

0

= 0 and

R




f = 0, then

R




u

1

(t) = 0 for all time.

Therefore, we 
onsider only solutions with zero mean. It follows that at any time t the

velo
ity �eld, the body for
ing and the pressure may ea
h be represented by a Fourier

series of the form

a =

X

k2J

â

k

�

k

; where J =

n

2�m

L

: m 2 Z

2

n f0g

o

; (1.2)

�

k

(x) = e

ik�x

and â

k

= â

�k

. Note that the Fourier 
oeÆ
ients 
orresponding to

the velo
ity and the for
ing are C

2

-ve
tor valued su
h that k � â

k

= 0 whereas the


oeÆ
ients 
orresponding to the pressure are s
alar. De�ne the norms

jaj = L

n

X

k2J

jâ

k

j

2

o

1=2

and kak = L

n

X

k2J

jkj

2

jâ

k

j

2

o

1=2

: (1.3)

The Fourier spa
e representation provides a 
onvenient way of des
ribing the

orthogonal proje
tions needed for our study. For a su
h that jaj <1 we de�ne

P

�

a =

X

jkj

2

��

â

k

�

k

and Q

�

= I � P

�

: (1.4)

Thus, for the proje
tion P

�

u

1

(t) given above, the quantity �

�1=2

represents the small-

est length s
ale of the 
uid whi
h 
an be observed|the resolution of the presumed

measuring equipment. Note that � and the rank N of P

�

are essentially proportional

in two dimensions.

In light of the results on determining proje
tions postulated by Foias and Temam

in [25℄ and proven in [6, 7, 28℄, similar results to those we shall present here are likely

to hold for any family of proje
tions P

�

for whi
h there exists 
onstants C

1

and 
 > 0

not depending on the rank N of P

�

su
h that ju�P

�

uj � C

1

N

�


kuk for all u su
h that

kuk < 1. See also [8℄ and [32℄. Further work along these lines appears in [4℄ for the

physi
ally relevant model 
onsisting of the two-dimensional Navier{Stokes equations

on the surfa
e of a rotating sphere.

Let us agree that if we were given u

0

exa
tly, that is, the detailed reality at time

t = 0, then we 
ould integrate the Navier{Stokes equations and hen
e get u

1

(t) exa
tly

for any t > 0. Therefore, the main diÆ
ulty is that we 
an not obtain u

0

exa
tly by
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measurement. However, we 
an obtain P

�

u

1

(t) over as large an interval in time as

needed. The question be
omes, how do we �nd u

1

(t) from P

�

u

1

(t). In general this

is not possible, so alternatively, let us �nd u

2

(t), a good asymptoti
 approximation

of u

1

(t).

To motivate �nding u

2

(t) let us rewrite the Navier{Stokes equations (1.1) as a

system of two 
oupled di�erential equations. Let u

i

= p

i

+ q

i

where p

i

= P

�

u

i

and

q

i

= Q

�

u

i

for i = 1; 2. Sin
e P

�

and Q

�

proje
t onto eigenfun
tions of the � operator

then they 
ommute with it. Similarly P

�

and Q

�


ommute with the divergen
e and

the gradient. Thus, proje
ting (1.1) by P

�

and then by Q

�

gives

8

>

<

>

:

�p

1

�t

+ P

�

�

(p

1

+ q

1

) � r(p

1

+ q

1

)

	

� ��p

2

+rP

�

�

1

= P

�

f; r � p

1

= 0

�q

1

�t

+Q

�

�

(p

1

+ q

1

) � r(p

1

+ q

1

)

	

� ��q

1

+rQ

�

�

1

= Q

�

f; r � q

1

= 0:

Sin
e p

1

(t) is given dire
tly by measurement, we need only integrate the se
ond

equation to �nd u

1

(t). However, sin
e we do not know q

1

(0) then integrating the

se
ond equation is impossible. Therefore, we 
ompute an approximation q

2

(t) of q

1

(t)

by integrating

�q

2

�t

+Q

�

�

(p

1

+ q

2

) � r(p

1

+ q

2

)

	

� ��q

2

+rQ

�

�

2

= Q

�

f; r � q

2

= 0 (1.5)

with initial 
onditions q

2

(0) = � where � = Q

�

� represents an initial guess of the

high modes q

1

(0) of the exa
t solution. Hen
e, the problem for us is a problem of

initialization, and we solve it by initializing the high frequen
ies any way we want and

then integrating.

In the numeri
al part of this paper we simply take � = 0, however, an initial

approximation of q

1

(0) might be more reasonably obtained by taking � = Q

�

�

�

p

1

(0)

�

where � is an approximate inertial manifold for the two-dimensional Navier{Stokes

equations. More information on approximate inertial manifolds and their appli
a-

tions may be found in Debuss
he and Marion [13℄, Devulder and Marion [14℄, Dubios,

Jauberteau and Temam [17℄, Foias, Manley and Temam [19, 20℄ and [15℄, [18℄, [23℄,

[30℄, [42℄ and referen
es therein.

A systemati
 
omputational study of 
ontinuous data assimilation in de
aying

two-dimensional turbulen
e was �rst performed by Browning, Henshaw and Kreiss [2℄.

In [2℄, 
omputations were done on the 2�-periodi
 torus with vis
osity � = 10

�5

,

for
ing f = 0 and � = 0. First, a highly a

urate referen
e 
al
ulation was made

to obtain the solution u

1

(t) of (1.1) starting from pres
ribed initial 
onditions u

0

su
h that ju

0

j = 1. The observational measurements P

�

u

1

(t) were saved and subse-

quently used for assimilation into a se
ond 
al
ulation to obtain u

2

(t). Noti
e that

sin
e the for
ing is zero, both u

1

and u

2

eventually 
onverge to zero. However, short

time transient behavior may be studied, for example, by monitoring the relative error

�

�

u

1

(t)� u

2

(t)

�

�

=

�

�

u

1

(t)

�

�

. Under these 
onditions, it was observed in [2℄ that 
ontinuous

data assimilation of the 64 lowest Fourier modes of u

1

was suÆ
ient to a

urately

re
onstru
t the small s
ales of u

1

, but assimilation of the 16 lowest modes was not.
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A similar study of de
aying three-dimensional turbulen
e was re
ently 
ompleted by

Kreiss and Ystr�om in [33℄. In this paper we generalize [2℄ by 
onsidering a non-zero

body for
ing f to avoid the diÆ
ulties of u

1

and u

2

de
aying to zero.

Continuous data assimilation is essentially the simplest algorithm for 
onstru
ting

an approximate solution u

2

suitable for treatment by the theory of determining modes

of Foias and Prodi [22℄. In this 
ontext it is ne
essary to view u

2

as a solution to a

modi�ed two-dimensional Navier{Stokes equations. This may be done by adding the

evolution equations for p

1

(t) to the evolution equations for q

2

(t). Thus, we obtain

�u

2

�t

+ (u

2

� r)u

2

� ��u

2

+r�

2

= f

2

; r � u

2

= 0 (1.6)

with initial 
onditions u

2

(0) = P

�

u

0

+ � where � = Q

�

� and

f

2

= f + P

�

�

(u

2

� r)u

2

� (u

1

� r)u

1

	

: (1.7)

Note that f

2

is a 
ompli
ated time-dependent feedba
k for
ing fun
tion that depends

on u

2

to ensure that P

�

u

1

(t) = P

�

u

2

(t) for all time t � 0.

The theory of determining modes, however, makes no assumptions on how u

2

was obtained. So, for a moment, let us forget that u

2

was 
onstru
ted by 
ontinuous

data assimilation and simply suppose it to be another solution to the Navier{Stokes

equations with a given time dependent for
ing f

2

(t). To avoid possible 
onfusion we

shall refer to independent solutions of the standard in
ompressible two-dimensional

Navier{Stokes equations (1.1) by v

1

and v

2

and their 
orresponding for
ing fun
tions

by g

1

and g

2

when dis
ussing the general theory of determining modes.

De�nition 1.1. The number of determining modes is the rank of the smallest

proje
tion P

�

su
h that for any two solutions v

1

and v

2

of (1.1) the 
onvergen
e

�

�

P

�

v

1

(t)� P

�

v

2

(t)

�

�

! 0 as t!1 guarantees that

�

�

v

1

(t)� v

2

(t)

�

�

! 0 as t!1. We

denote by �




the smallest value of � su
h that the rank of P

�

is equal to the number

of determining modes N




.

It was �rst shown in [22℄ that the two-dimensional Navier{Stokes equations pos-

sess a �nite number of determining modes. At about the same time a result more di-

re
tly related to 
ontinuous data assimilation was independently proved by Ladyzhen-

skaya [35℄. It is 
lear that the number of determining modes should depend on the

for
ing, the vis
osity, and the size of the domain. In [43℄ Tr�eve and Manley gave a

physi
al argument relating the number of determining modes in Rayleigh{B�enard 
on-

ve
tion to the Rayleigh number divided by the Prandtl number. By identifying the

buoyan
y for
e in Rayleigh{B�enard 
onve
tion with the body for
ing in the Navier{

Stokes equations this lead to

De�nition 1.2. The Grashof number is de�ned as

Gr(f) = (L=2��)

2

lim sup

t!1

�

�

f(t)

�

�

:

The �rst reasonable rigorous estimate on the number of determining modes in terms

of the Grashof number was provided by Foias, Manley, Temam and Tr�eve [21℄. It
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was observed by Foias and Temam in [24℄ and in [31℄ that the theory of determining

modes 
an be extended to families of Navier{Stokes equations with asymptoti
ally

equivalent body for
ing. This is of parti
ular interest to us, sin
e the for
ing fun
tion

f

2

in 
ontinuous data assimilation is not equal to f . The best estimate to date in the

periodi
 
ase is given in [32℄ whi
h we shall restate here as

Theorem 1.3. Let v

1

and v

2

be two solutions of the two-dimensional Navier{Stokes

equations on the L-periodi
 torus with 
orresponding for
ing fun
tions g

1

and g

2

and

possibly di�erent initial 
onditions. Then there exists a 
onstant 


1

independent of �,

L, g

i

or of any initial 
onditions su
h that for every �(L=2�)

2

> 


1

Gr(g

1

) the limits

�

�

g

1

(t)� g

2

(t)

�

�

! 0 and

�

�

P

�

v

1

(t)� P

�

v

2

(t)

�

�

! 0 as t!1

imply that







v

1

(t)� v

2

(t)







! 0 as t!1:

Before pro
eeding, let us �rst note that a minor modi�
ation of the proof of

Theorem 1.3 presented in [32℄ allows us to relax the hypothesis on g

1

and g

2

. In

parti
ular, it is suÆ
ient to require in Theorem 1.3 that

�

�

Q

�

g

1

(t) � Q

�

g

2

(t)

�

�

! 0 as

t!1. The intuitive reason for this is 
lear. Sin
e the di�eren
e of the low modes of

v

1

and v

2

is already 
ontrolled by hypothesis and 
onverge to zero, then all we need to

show is that the di�eren
e of the high modes of v

1

and v

2


onverge to zero. Therefore

only the di�eren
e of the high modes of g

1

and g

2

need enter into the proof. In light

of this observation, Theorem 1.3 may be rewritten as

Theorem 1.4. Let v

1

and v

2

be two solutions of the two-dimensional Navier{Stokes

equations on the L-periodi
 torus with 
orresponding for
ing fun
tions g

1

and g

2

and

possibly di�erent initial 
onditions. Then there exists a 
onstant 


1

independent of �,

L, g

i

or of any initial 
onditions su
h that for every �(L=2�)

2

> 


1

Gr(g

1

) the limits

�

�

Q

�

g

1

(t)�Q

�

g

2

(t)

�

�

! 0 and

�

�

P

�

v

1

(t)� P

�

v

2

(t)

�

�

! 0 as t!1

imply







v

1

(t)� v

2

(t)







! 0 as t!1:

Thus, we may 
hoose the low modes of g

1

and g

2

to be anything we like provided

this 
hoi
e ensures jP

�

v

1

(t)� P

�

v

2

(t)j ! 0 as t!1. In the 
ase of 
ontinuous data

assimilation we note that

�

�

Q

�

g

1

(t)�Q

�

g

2

(t)

�

�

=

�

�

Q

�

f

1

(t)�Q

�

f

2

(t)

�

�

= 0 and

�

�

P

�

v

1

(t)�

P

�

v

2

(t)

�

�

=

�

�

P

�

u

1

(t) � P

�

u

2

(t)

�

�

= 0 for all time t � 0. Therefore, given � > 


1

Gr(f)

and provided that the solution u

2

(t) to (1.6) exists, it follows that







u

1

(t)�u

2

(t)







! 0

as t!1. In parti
ular, 
ontinuous data assimilation works for � large enough.

We begin our study of how the 
onvergen
e of u

2

to u

1

is a�e
ted by the spatial

stru
ture and length s
ales present in the for
ing f by 
onsidering the time-independent

for
ing fun
tions

G(R) =

�

f : Gr(f) = R

	

:
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Given f 2 G(R) let u

1

be the 
orresponding solution of (1.1). Res
ale this solution

as follows. Set

~

f(x) = 8f(2x), ~u

1

(x; t) = 2u

1

(2x; 4t), ~�

1

(x; t) = 4�

1

(2x; 4t) and

~u

0

(x) = 2u

0

(2x). Sin
e

~

f , ~u

1

, ~�

1

and ~u

0

are L=2-periodi
, then they are also L-

periodi
. Thus, we �nd that ~u

1

satis�es

d~u

1

dt

+ (~u

1

� r)~u

1

� ��~u

1

+r~�

1

=

~

f; r � ~u

1

= 0 (1.8)

with initial 
onditions ~u

1

(0) = ~u

0

on the L-periodi
 torus. That is, ~u

1

is a solution

to the two-dimensional Navier{Stokes equations with for
ing

~

f . Sin
e j

~

f j = 8jf j then

~

f 2 G(8R). It follows that for every f 2 G(R) there is an

~

f 2 G(8R) su
h that the


orresponding solutions u

1

and ~u

1

have exa
tly the same dynami
s.

The above observation shows that the Grashof number alone 
annot determine

the dynami
al 
omplexity of the two-dimensional Navier{Stokes equations. Therefore,

in order to 
ondu
t a more detailed analysis we 
onsider the negative Sobolev norm

or dual norm of kfk de�ned as

kfk

�

= L

n

X

k2J

jkj

�2

j

^

f

k

j

2

o

1=2

: (1.9)

As we shall see below, this norm will be useful in obtaining a determining modes result

whi
h distinguishes between for
ing fun
tions with the same Grashof number that are

supported on di�erent spatial length s
ales. Namely, we shall prove

Theorem 1.5. Let u

1

(t) be a solution on the global attra
tor of the two-dimensional

Navier{Stokes equations (1.1) with time-independent for
ing f 2 L

2

(
). Let u

2

(t) be

the approximation to u

1

(t) obtained from the 
ontinuous data assimilation (1.6) of the

observational measurements P

�

u

1

(�) over the time interval � 2 [0; t℄. Then there are


onstants K

1

and K

2

independent of all initial 
onditions su
h that

(i) If there exists � su
h that 0 < 2� � ��� 


2

1

�

�3

kfk

2

�

then

�

�

u

1

(t)� u

2

(t)

�

�

�

�

�

u

1

(0)� u

2

(0)

�

�

K

1

e

��t

for t � 0:

(ii) If there exists � su
h that 0 < 2� � ��� 


2

1

(�

3

�)

�1

jf j

2

then







u

1

(t)� u

2

(t)







�







u

1

(0)� u

2

(0)







K

2

e

��t

for t � 0:

Note that Theorem 1.5 shows that the 
onvergen
e of u

2

to u

1

is, in fa
t, expo-

nential in time. This leads us to the following de�nition.

De�nition 1.6. The rate of 
ontinuous data assimilation of enstrophy is the supre-

mum over all � su
h that







u

1

(t)� u

2

(t)







= O(e

��t

) as t!1.

This paper 
onsists of analysis followed by 
omputational results. First we pla
e

equations (1.1) and (1.6) in the appropriate fun
tional settings that allow rigorous

mathemati
al analysis of their solutions. We then state a number of important in-

equalities and fa
ts that we shall need later on. The main goal of our work is to

6



demonstrate that there is a strong relationship between the spatial stru
ture of f ,

the rate of 
ontinuous data assimilation and the number of determining modes in


ontinuous data assimilation.

Our analysis begins by showing the 
ontinuous data assimilation equations (1.6)

are globally well posed. For 
omputational relevan
e we restri
t our attention to strong

solutions. We then establish a number of lemmas and eventually prove Theorem 1.5.

We 
lose with a dis
ussion of whether the system of equations given by (1.1) and (1.6)

is dissipative. When � = 0 equation this system is dissipative sin
e in this 
ase f

2

= f

and the feedba
k term P

�

�

(u

2

� r)u

2

� (u

1

� r)u

1

	

= 0. Thus u

2

is a solution of the

two-dimensional Navier{Stokes equations for for
ing f . For

� > min

�




2

1

�

�4

kfk

2

�

; 


1

�

�2

jf j

	

(1.10)

dissipativity follows from the 
onvergen
e of u

2

to u

1

as in Theorem 1.5. However, for

intermediate values of � the dissipativity of the 
ontinuous data assimilation equations

remains in question.

Our 
omputational results 
onsist of two sets of experiments. All experiments

were performed with � = 0:0001 and � = Q

�

u

2

(0) = 0 on the 2�-periodi
 torus for

for
ing fun
tions with a Grashof number of R = 250000. Guided by Theorem 1.5 we

�rst 
onsider time-independent for
ing fun
tions f 2 G(R) supported on an annulus

in Fourier spa
e. Thus, f may be written

f =

X

�

m

�k

2

��

M

^

f

k

�

k

: (1.11)

with

^

f

k

=

^

f

�k

, k �

^

f

k

= 0 and

^

f

0

= 0. We take the width of the annulus to be

�

M

� �

m

= 4�

1=2

f

� 2 where �

f

= (�

m

+ �

M

)=2:

The width of the annulus is proportional to the wave number about whi
h it is 
entered.

It was shown by Constantin, Foias and Manley in [10℄ that no Kolmogorov 
ow,

that is no 
ow driven by for
ing only one Fourier mode, 
an sustain a Krai
hnan

inertial range spe
trum in a statisti
ally steady state. However, two eigenmodes 
an

be suÆ
ient. When �

f

� 1 our 
ondition ensures that f for
es Fourier modes over a

range of di�erent eigenvalues. In parti
ular, these for
ing fun
tions generate nonlinear

intera
tions leading to time-dependent 
ows involving all the Fourier modes. This

avoids the for
ing fun
tions exhibited by Mar
hioro in [37℄ whi
h lead to steady 
ows

whi
h are globally asymptoti
ally stable for any Reynolds number. In parti
ular,

Mar
hioro obtains

Theorem 1.7. If f is supported on only the lowest modes in Fourier spa
e then the

solution to (2.6) 
onverges to a steady 
ow whi
h is globally asymptoti
ally stable.

Constantin, Foias and Temam give a simpli�ed proof of this result in [11℄.

For any given �

f

let F(�

f

) be the set of all fun
tions f of the form (1.11) su
h

that Gr(f) = R. In this way we obtain a one parameter family of subsets F(�

f

) of

7



G(R) su
h that ea
h subset 
onsists of fun
tions supported only on 
ertain spe
i�ed

spatial length s
ales. For fun
tions f 2 F(�

f

) we have that

�

�

1=2

f

+ 1

�

�2

jf j

2

� kfk

2

�

�

�

�

1=2

f

� 1

�

�2

jf j

2

: (1.12)

Therefore, kfk

�

de
reases for f 2 F(�

f

) as �

f

in
reases.

In our �rst set of experiments we vary �

f

from 25 through 625 and sele
t fun
tions

f 2 F(�

f

) by 
hoosing the amplitudes of the 
oeÆ
ients

^

f

k

in (1.11) a

ording to a

Gaussian distribution. For ea
h fun
tion sele
ted, a number of 
ontinuous data assim-

ilation experiments were 
ondu
ted using di�erent values of � for the observational

measurements P

�

u

1

(t). We measure how the rate of 
ontinuous data assimilation �

depends on the data assimilation parameter � and the for
ing length-s
ale parameter

�

f

. For ea
h for
ing fun
tion f , the number of determining modes is 
onsequently the

rank of the smallest proje
tion P

�

for whi
h � is 
learly positive.

Table 1. The relationship between length s
ale �

f

in the

for
ing, �




and the number of determining modes N




.

�

f

25 64 121 169 256 361 484 529 576 625

�




4 13 26 49 73 82 73 65 27 10

N




12 44 88 148 232 260 232 212 88 36

The results in the �rst half of Table 1 are, at �rst, rather surprising. The analyti
al

bounds in part (i) of Theorem 1.5 suggest that the number of determining modes

should de
rease as �

f

in
reases; however, our 
omputations indi
ate that the number

of determining modes a
tually in
reases by more than an order of magnitude while �

f

ranges from 25 to 361. Only for �

f

greater than 361 does the number of determining

modes given by our 
al
ulations re
e
t the de
rease of kfk

�

as �

f

in
reases.

Why does a 
ow driven by a fun
tion in F(428) require more determining modes

than a 
ow driven by a fun
tion in F(25)? We 
ondu
t a se
ond set of 
omputational

experiments to shed some light on the 
ause of this phenomenon. Given f

L

2 F(25)

and f

H

2 F(484) we set f = �

L

f

L

+ �

H

f

H

where �

2

L

+ �

2

H

= 1. In this way we obtain

for
ing fun
tions supported on two disjoint annuli in Fourier spa
e|one on small wave

numbers, the other on large. Here �

L

and �

H

are parameters determining the relative

weights of the large and small length s
ales in the for
ing. When �

H

is 
lose to zero f

may be viewed as the perturbation of the large s
ales f

L

by the small s
ales f

H

; when

�

L

is 
lose to zero f is the perturbation of the small s
ales f

H

by the large s
ales f

L

.

We determine whi
h perturbation more signi�
antly a�e
ts the number of determining

modes 
omputationally in Table 2.
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Table 2. The relationship between the weights �

L

and �

H

in the

for
ing, �




and the number of determining modes N




.

�

L

0 0.080 0.160 0.320 0.768 1

�

H

1 0.997 0.987 0.947 0.640 0

�




73 37 26 13 5 4

N




232 120 88 44 20 12

As shown by the �rst three 
olumns, perturbing the small s
ales by the large s
ales

has the greatest e�e
t. This suggests that it is the absen
e of an in
reasing number

of the large length s
ales in the for
ing whi
h is primarily responsible for the in
rease

in number of determining modes as �

f

ranging from 25 though 361 in the �rst set of

experiments.

We dedi
ate this paper to the memory of Os
ar P. Manley, a good friend and

sour
e of en
ouragement, whose interest and physi
al insight motivated and laid the

foundations for our work.

2. Preliminaries

In this se
tion we 
hara
terize the spa
es H, V and V

0

whi
h appear in the study of

the Navier{Stokes equations and state a number of inequalities and fa
ts that we shall

need later on. For further details see, for example, Constantin and Foias [9℄, Doering

and Gibbon [16℄, Robinson [39℄ or Temam [40, 41℄.

First, de�ne the spa
es V

�

in terms of the formal Fourier series (1.2) as

V

�

=

n

u =

X

k2J

û

k

�

k

: kuk

2

�

<1; û

k

= û

�k

; k � û

k

= 0 and û

0

= 0

o

where the norm

kuk

2

�

= L

2

X

k2J

jkj

2�

jû

k

j

2

: (2.1)

Note that

kuk

�

= sup

�

hu; vi : v 2 V

��

and kvk

��

= 1

	

(2.2)

where the pairing

hu; vi = L

2

X

k2J

û

k

� v̂

�k

:

Fourier theory implies that V

�

is a subspa
e of L

2

(
) for � � 0. Furthermore, V

��

may be identi�ed with the 
ontinuous dual of V

�

.

A relation exists between the norms de�ned in (2.1) and the proje
tions de�ned

in (1.4) whi
h allows us to bound the norms of Q

�

u and P

�

u in a way that depends on

the resolution parameter �. For � < � we obtain the following version of the Poin
ar�e

inequality

jjQ

�

uk

2

�

= L

2

X

jkj

2

>�

jkj

2�

jû

k

j

2

�

L

2

�

���

X

jkj

2

>�

jkj

2�

jû

k

j

2

=

1

�

���

kQ

�

uk

2

�

; (2.3)
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and for � > � we obtain the inequality

jjP

�

uk

2

�

= L

2

X

jkj

2

��

jkj

2�

jû

k

j

2

� L

2

�

���

X

jkj

2

��

jkj

2�

jû

k

j

2

= �

���

kP

�

uk

2

�

: (2.4)

Sin
e Q

�

1

u = u for �

1

= (2�=L)

2

then (2.3) yields the usual Poin
ar�e inequality

kuk

2

�

�

1

�

���

1

kuk

2

�

for � < �: (2.5)

The fun
tional spa
es for solving (1.1) and (1.6) may now be de�ned as H = V

0

,

V = V

1

and V

0

= V

�1

. Note that the norms kuk

0

, kuk

1

and kuk

�1

are respe
tively

the norms juj, kuk and kuk

�

given in (1.3) and (1.9). Thus, H 
onsists of the square-

integrable fun
tions on the L-periodi
 torus 
 whi
h are divergen
e free and have

zero mean, V are those fun
tions in H whose �rst order derivatives are also square

integrable, and V

0

is the dual of V . Moreover, by Parseval's identity the norms on H

and V may also be expressed as juj =

� R




u � u

	

1=2

and kuk = jruj = jr � uj.

De�nition 2.1. De�ne the Leray proje
tor P

�

:L

2

! H to be the L

2

orthogonal

proje
tion from L

2

onto H. Further de�ne A:V ! V

0

and B:V � V ! V

0

to be the


ontinuous extensions of the operators given by

Au = �P

�

�u and B(u; v) = P

�

(u � rv)

for any suitably smooth fun
tion u. Noti
e that the domain D(A) of A is V

2

.

For u

0

2 V and f 2 H we write the Navier{Stokes equations (1.1) as the fun
tional

equation in H given by

du

1

dt

+ �Au

1

+B(u

1

; u

1

) = f (2.6)

with initial 
onditions u

1

(0) = u

0

. Under these hypothesis equations (2.6) possess

unique strong solutions depending 
ontinuously on the initial 
ondition u

0

. This is

stated spe
i�
ally as

Theorem 2.2. Let u

0

2 V and f 2 L

2

lo


�

(0;1);H

�

. Then (2.6) has unique strong

solutions that satisfy

u

1

2 L

1

�

(0; T );V

�

\ L

2

�

(0; T );D(A)

�

and

du

1

dt

2 L

2

�

(0; T );H

�

for any T > 0. Furthermore, this solution is in C

�

[0; T ℄;V

�

and depends 
ontinuously

on the initial data u

0

in the V norm.

A proof of this theorem 
an be found, for example, in any of the referen
es

[9℄, [16℄, [39℄ or [40, 41℄ mentioned above. In the next se
tion we prove a similar

result for the 
ontinuous data assimilation equations (1.6) governing the evolution of

u

2

(t). Note that the main diÆ
ulty there lies in 
ontrolling the feedba
k for
ing f

2

.
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Let us now re
all some algebrai
 properties of the non-linear term B(u; v) that

play an important role in our analysis. These results may be found in any of the

referen
es [9℄, [16℄, [39℄ or [40, 41℄. For u, v, w 2 V we have that




B(u; v); w

�

= �




B(u;w); v

�

(2.7)

and 
onsequently




B(u; v); v

�

= 0: (2.8)

Furthermore, if v 2 D(A) then

�

B(v; v); Av

�

= 0 (2.9)

and by di�erentiation of (2.9) we obtain

�

B(u; v); Av

�

+

�

B(v; u); Av

�

+

�

B(v; v); Au

�

= 0 (2.10)

for u; v 2 D(A). Note that 
onditions (2.9) and (2.10) are valid only for the two-

dimensional Navier{Stokes equations on a periodi
 domain.

The non-linear term may be estimated by H�older's inequality followed by La-

dyzhenskaya's inequality [34℄. In order to expli
itly estimate the 
onstants appearing

in our analysis we state Ladyzhenskaya's inequality here as

Lemma 2.3. Given u 2 V then

kuk

2

L

4

� 


1

jujkuk (2.11)

where 


1

� 2 + (2�)

�1

for the two-dimensional torus 
.

With this result in hand, if u, v, w 2 V then

�

�




B(u; v); w

�

�

�

� kuk

L

4

kvkkwk

L

4

� 


1

juj

1=2

kuk

1=2

kvkjwj

1=2

kwk

1=2

;

(2.12)

and if u 2 V , v 2 D(A) and w 2 H then

�

�




B(u; v); w

�

�

�

� kuk

L

4
krvk

L

4
jwj � 


1

juj

1=2

kuk

1=2

kvk

1=2

jAvj

1=2

jwj:

(2.13)

We end this se
tion with some well known bounds on the time averages of ku

1

k

and jAu

1

j in terms of u

0

and f whi
h will be used in the next se
tion.

Lemma 2.4. Let u

1

(t) be the unique strong solution to (2.6) with time-dependent

for
ing f 2 L

2

lo


�

(0;1);H

�

and initial 
ondition u

0

2 V . Then

1

t

Z

t

0







u

1

(�)







2

d� �

1

�t

ju

0

j

2

+

1

�

2

t

Z

t

0







f(�)







2

�

d� (2.14)

and

1

t

Z

t

0

�

�

Au

1

(�)

�

�

2

d� �

1

�t

ku

0

k

2

+

1

�

2

t

Z

t

0

�

�

f(�)

�

�

2

d�: (2.15)
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Proof: The proof may be found in any of the referen
es [9℄, [16℄, [39℄ or [40, 41℄. For


ompleteness, we shall present formal 
al
ulation here that 
ould be made rigorous if

so desired.

To derive the �rst inequality, multiply (2.6) by u

1

and use (2.8) to obtain

1

2

d

dt

ju

1

j

2

+ �ku

1

k

2

= (f; u

1

) � kfk

�

ku

1

k:

Note that sin
e u

1

2 V and f 2 H � V

0

we may view f as an element of V

0

and

estimate (f; u

1

) by kfk

�

ku

1

k. Applying Young's inequality gives

d

dt

ju

1

j

2

+ �ku

1

k

2

�

1

�

kfk

2

�

(2.16)

whi
h upon integrating in time yields

�

�

u

1

(t)

�

�

2

+ �

Z

t

0







u

1

(�)







2

d� � ju

0

j

2

+

1

�

Z

t

0







f(�)







2

�

d�:

After dropping the �rst term on the left, inequality (2.14) follows.

To derive the se
ond inequality, multiply (2.6) by Au

1

and use (2.9) to obtain

1

2

d

dt

ku

1

k

2

+ �jAu

1

j

2

= (f;Au

1

):

Applying Cau
hy{S
hwarz and Young's inequalities gives

d

dt

ku

1

k

2

+ �jAu

1

j

2

�

1

�

jf j

2

(2.17)

whi
h upon integrating in time yields







u

1

(t)







2

+ �

Z

t

0

�

�

Au

1

(�)

�

�

2

d� � ku

0

k

2

+

1

�

Z

t

0

�

�

f(�)

�

�

2

d�:

After dropping the �rst term on the left, inequality (2.15) follows.

3. Analyti
al Results for Continuous Data Assimilation

We treat the 
ontinuous data assimilation equations (1.6) as a fun
tional di�er-

ential equation in the same way that the Navier{Stokes equations (1.1) were treated

in the previous se
tion to obtain (2.6) to arrive at the 
oupled system

8

>

<

>

:

du

1

dt

+ �Au

1

+B(u

1

; u

1

) = f

du

2

dt

+ �Au

2

+B(u

2

; u

2

) = f + P

�

�

B(u

2

; u

2

)� B(u

1

; u

1

)

�

(3.1)
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with initial 
onditions u

1

(0) = u

0

and u

2

(0) = P

�

u

0

+ � where u

0

2 V and � 2 Q

�

V .

The solution to equation (3.1) may be viewed as two solutions u

1

and u

2

to the

Navier{Stokes equations (2.6) with 
orresponding for
ing f

1

and f

2

given by

f

1

= f and f

2

= f + P

�

�

B(u

2

; u

2

)�B(u

1

; u

1

)

�

: (3.2)

Note that the for
ing fun
tion f

2

as de�ned above is a
tually the proje
tion with

respe
t to P

�

of the fun
tion de�ned by (1.7) in the introdu
tion. Sin
e f

2

is 
hosen in

a 
ompli
ated way depending on a feedba
k with u

2

, it is not immediately 
lear that

the se
ond equation in (3.1) is globally well posed. This issue is settled by

Theorem 3.1. Let T > 0 and � � 0. If u

0

= u

1

(0) 2 V , � = Q

�

u

2

(0) 2 Q

�

V and

f 2 L

2

lo


�

(0;1);H

�

then (3.1) viewed as a system of fun
tional equations in H has a

unique strong solution that satis�es

u

i

2 L

1

�

(0; T );V

�

\ L

2

�

(0; T );D(A)

�

and

du

i

dt

2 L

2

�

(0; T );H

�

(3.3)

for i = 1; 2. Furthermore, the solutions are in C

�

[0; T ℄;V

�

and depend 
ontinuously

on the initial data u

0

and � in the V norm.

Proof: First we show existen
e of solutions. For u

1

this result follows from the


lassi
al theory of the Navier{Stokes equations given by Theorem 2.2. For u

2

we use

the the Galerkin method. Let P

n

be the n-th Galerkin proje
tor and assume that n

is large enough that P

�

H � P

n

H. The solution u

n

2

to the �nite-dimensional Galerkin

trun
ation of the se
ond equation in (3.1) satis�es

du

n

2

dt

+ �Au

n

2

+ P

n

B(u

n

2

; u

n

2

) = P

n

f + P

�

�

B(u

n

2

; u

n

2

)�B(u

1

; u

1

)

�

: (3.4)

Solutions to this ordinary di�erential equation exist for short times sin
e the non-

linearity is lo
ally Lipshitz. Long time existen
e follows from the estimates we will

provide shortly. Moreover, sin
e these estimates are uniform in n, the 
ompa
tness

theorems of Aubin [1℄ 
an be used to extra
t subsequen
es as n ! 1 in su
h a way

that u

n

2


onverges to a solution to (3.1) satisfying (3.3). Further details may be found,

for example, in [9℄, [16℄, [39℄, or [40, 41℄. As these te
hniques are well known, we

shall 
ontent ourselves here with a formal 
al
ulation that 
ould be made rigorous if

so desired.

In the estimates that follow, we denote the Galerkin solution u

n

2

to (3.4) by u

2

for notational simpli
ity. Sin
e u

1

2 C

�

[0; T ℄;V

�

then there exists M

1

large enough

that







u

1

(t)







� M

1

for all t. The low modes P

�

u

2

(t) are bounded in any norm sin
e

all �nite dimensional norms are equivalent and P

�

u

2

(t) = P

�

u

1

(t). In parti
ular, the

Poin
ar�e inequality (2.4) implies that

�

�

AP

�

u

2

(t)

�

�

=

�

�

AP

�

u

1

(t)

�

�

� �

1=2







P

�

u

1

(t)







� �

1=2







u

1

(t)







� �

1=2

M

1

: (3.5)

In the 
ase that f is time independent then there are uniform estimates on

�

�

Au

1

(t)

�

�

for u

1

on the attra
tor, see, for example [9℄, [16℄, [39℄, or [40, 41℄. In this 
ase we 
ould

bound

�

�

AP

�

u

2

(t)

�

�

independently of �.

13



Estimate the high modes Q

�

u

2

(t) by taking the inner produ
ts of (3.4) with

AQ

�

u

2

to obtain

1

2

d

dt

kQ

�

u

2

k

2

+ �jAQ

�

u

2

j

2

= (f;AQ

�

u

2

)�

�

B(u

2

; u

2

); AQ

�

u

2

�

: (3.6)

The �rst term on the right side may be estimated using Cau
hy{S
hwarz and Young's

inequalities as

(f;AQ

�

u

2

) �

2

�

jf j

2

+

�

8

jAQ

�

u

2

j

2

:

To estimate the se
ond term use (2.9) and the bi-linearity repeatedly to obtain

�

�

B(u

2

; u

2

); AQ

�

u

2

�

=

�

B(u

2

; u

2

); AP

�

u

2

�

=

�

B(P

�

u

2

; u

2

); AP

�

u

2

�

+

�

B(Q

�

u

2

; u

2

); AP

�

u

2

�

=

�

B(Q

�

u

2

; P

�

u

2

); AP

�

u

2

�

+

�

B(P

�

u

2

; Q

�

u

2

); AP

�

u

2

�

+

�

B(Q

�

u

2

; Q

�

u

2

); AP

�

u

2

�

:

Now (2.13) and (2.3) followed by Young's inequality and then (3.5) yields

�

�

�

B(Q

�

u

2

; P

�

u

2

); AP

�

u

2

�

�

�

� 


1

jQ

�

u

2

j

1=2

kQ

�

u

2

k

1=2

kP

�

u

2

k

1=2

jAP

�

u

2

j

3=2

� 


1

�

�3=4

jAQ

�

u

2

jkP

�

u

2

k

1=2

jAP

�

u

2

j

3=2

�

2


2

1

��

3=2

kP

�

u

2

kjAP

�

u

2

j

3

+

�

8

jAQ

�

u

2

j

2

�

2


2

1

M

4

1

�

+

�

8

jAQ

�

u

2

j

2

:

The inequalities (2.13), (2.3) and (2.5) followed by Young's inequality and (3.5) yields

�

�

�

B(P

�

u

2

; Q

�

u

2

); AP

�

u

2

�

�

�

� 


1

jP

�

u

2

j

1=2

kP

�

u

2

k

1=2

kQ

�

u

2

k

1=2

jAQ

�

u

2

j

1=2

jAP

�

u

2

j

� 


1

�

�1=4

jP

�

u

2

j

1=2

kP

�

u

2

k

1=2

jAP

�

u

2

jjAQ

�

u

2

j

� 


1

�

�1=4

�

�1=4

1

kP

�

u

2

kjAP

�

u

2

jjAQ

�

u

2

j

�

2


2

1

��

1=2

�

1=2

1

kP

�

u

2

k

2

jAP

�

u

2

j

2

+

�

8

jAQ

�

u

2

j

2

�

�

2


2

1

M

4

1

�

�

�

1=2

�

1=2

1

+

�

8

jAQ

�

u

2

j

2

:

Finally (2.13) and (2.3) followed by Young's inequality and (3.5) yields

�

�

�

B(Q

�

u

2

; Q

�

u

2

); AP

�

u

2

�

�

�

� 


1

jQ

�

u

2

j

1=2

kQ

�

u

2

kjAQ

�

u

2

j

1=2

jAP

�

u

2

j

� 


1

�

�1=2

kQ

�

u

2

kjAQ

�

u

2

jjAP

�

u

2

j

�

2


2

1

��

kQ

�

u

2

k

2

jAP

�

u

2

j

2

+

�

8

jAQ

�

u

2

j

2

�

2


2

1

M

2

1

�

kQ

�

u

2

k

2

+

�

8

jAQ

�

u

2

j

2

:

14



It follows that (3.6) be
omes

d

dt

kQ

�

u

2

k

2

+ �jAQ

�

u

2

j

2

�

2


2

1

M

2

1

�

kQ

�

u

2

k

2

+

4

�

jf j

2

+ �

1

(3.7)

where the 
onstant

�

1

=

2


2

1

M

4

1

�

�

1 +

�

1=2

�

1=2

1

�

:

Applying (2.3) to the se
ond term on the left of (3.7) and regrouping yields

d

dt

kQ

�

u

2

k

2

+

n

���

2


2

1

M

2

1

�

o

kQ

�

u

2

k

2

�

4

�

jf j

2

+ �

1

:

This inequality may be written

d�

dt

+ �

2

� �

4

�

jf j

2

+ �

1

(3.8)

where

�

2

= ���

2


2

1

M

2

1

�

and � = kQ

�

u

2

k

2

:

Gronwall's inequality applied to (3.8) yields that

�(t) � �(0)e

��

2

t

+

�

1

�

2

�

1� e

��

2

t

�

+

4

�

Z

t

0

�

�

f(s)

�

�

2

e

��

2

(t�s)

ds: (3.9)

Sin
e f 2 L

2

lo


�

(0;1);H

�

it follows that







Q

�

u

2

(t)







2

is bounded for any interval [0; T ℄.

Hen
e u

2

2 L

1

�

(0; T );V

�

.

Next we show u

2

2 L

2

�

(0; T );D(A)

�

. Let M

2

be the bound exhibited above su
h

that







u

2

(t)







2

�M

2

for all t in [0; T ℄. Substituting this bound into (3.7) obtains

d

dt

kQ

�

u

2

k

2

+ �jAQ

�

u

2

j

2

�

4

�

jf j

2

+ �

3

(3.10)

where

�

3

=

2


2

1

M

2

1

M

2

2

�

+ �

1

:

Gronwall's inequality applied to (3.10) yields







Q

�

u

2

(T )







2

+ �

Z

T

0

jAQ

�

u

2

j

2

�







Q

�

u

2

(0)







2

+

4

�

Z

T

0

jf j

2

+ T�

3

:

Upon dropping the �rst term on the left and majorizing the �rst term on the right by

M

2

2

it follows that

Z

T

0

jAQ

�

u

2

j

2

�

1

�

�

M

2

2

+

4

�

Z

T

0

jf j

2

+ T�

3

�

:
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Therefore u

2

2 L

2

�

(0; T );D(A)

�

.

The proof that du

2

=dt 2 L

2

�

(0; T );H

�

pro
eeds in exa
tly the same way as for

the two-dimensional Navier{Stokes equations. The Galerkin method then leads to the

existen
e of solutions to (3.1) satisfying (3.3).

Next, we show that su
h solutions are unique and depend 
ontinuously on the

initial data. Let u

i

and v

i

be two solutions to (3.1) satisfying (3.3) for i = 1; 2 with

initial 
onditions in V su
h that P

�

u

1

(0) = P

�

u

2

(0) and P

�

v

1

(0) = P

�

v

2

(0). Let the


onstants M

1

and M

2

be 
hosen large enough so that







u

i

(t)







�M

i

and







v

i

(t)







�M

i

for i = 1; 2 and almost every t in [0; T ℄. Let w

i

= u

i

�v

i

. Sin
e u

1

and v

1

are solutions

to the standard two-dimensional Navier{Stokes equations, then Theorem 2.2 implies







w

1

(t)







2

�  (t)







w

1

(0)







2

for t � 0 (3.11)

for some 
ontinuous monotone in
reasing fun
tion  (t) with  (0) = 1. To obtain

similar estimates on w

2

, subtra
t the equation for v

2

from the equation for u

2

. Thus,

dw

2

dt

+ �Aw

2

= P

�

�

B(v

1

; v

1

)� B(u

1

; u

1

)

�

+Q

�

�

B(v

2

; v

2

)� B(u

2

; u

2

)

�

:

Introdu
ing �P

�

B(v

1

; u

1

) and �P

�

B(v

2

; u

2

) on the right side yields

dw

2

dt

+ �Aw

2

= �P

�

�

B(v

1

; w

1

) +B(w

1

; u

1

)

�

�Q

�

�

B(v

2

; w

2

) +B(w

2

; u

2

)

�

:

Sin
e w

2

2 L

2

�

0; T ;D(A)

�

and dw

2

=dt 2 L

2

�

0; T ;H) then the interpolation lemma of

Lions{Magenes [36℄ implies that

�

dw

2

dt

; Aw

2

�

=

1

2

d

dt

kw

2

k

2

:

See also Corollary 7.3 in [39℄ or Lemma 1.2 in [40℄. Now, taking inner produ
ts with

Aw

2

and using the fa
t that P

�

w

2

= P

�

w

1

we obtain

1

2

d

dt

kw

2

k

2

+ �jAw

2

j

2

= �

�

B(v

1

; w

1

); P

�

Aw

1

�

�

�

B(w

1

; u

1

); P

�

Aw

1

�

�

�

B(v

2

; w

2

); Q

�

Aw

2

�

�

�

B(w

2

; u

2

); Q

�

Aw

2

�

:

(3.12)

By (2.12), (2.4) and (2.5) and then (3.11) we have

�

�

�

B(v

1

; w

1

); P

�

Aw

1

�

�

�

� jv

1

j

1=2

kv

1

k

1=2

kw

1

kjP

�

Aw

1

jkP

�

Aw

1

k

�

�

3=2

�

1=2

1

kv

1

kkw

1

k

2

�

�

3=2

�

1=2

1

M

1

 (t)







w

1

(0)







2

:

Similarly we estimate

�

�

�

B(w

1

; u

1

); P

�

Aw

1

�

�

�

� jw

1

j

1=2

kw

1

k

1=2

ku

1

kjP

�

Aw

1

jkP

�

Aw

1

k

�

�

3=2

�

1=2

1

ku

1

kkw

1

k

2

�

�

3=2

�

1=2

1

M

1

 (t)







w

1

(0)







2

:
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Using (2.13), Young's inequality and then (2.5) we estimate

�

�

�

B(v

2

; w

2

); Q

�

Aw

2

�

�

�

� jv

2

j

1=2

kv

2

k

1=2

kw

2

k

1=2

jAw

2

j

3=2

�

�

3

2�

�

3

1

4

jv

2

j

2

kv

2

k

2

kw

2

k

2

+

�

2

jAw

2

j

2

�

27

32�

3

M

4

2

�

1

kw

2

k

2

+

�

2

jAw

2

j

2

and also

�

�

�

B(w

2

; u

2

); Q

�

Aw

2

�

�

�

� jw

2

j

1=2

kw

2

k

1=2

ku

2

k

1=2

jAu

2

j

1=2

jAw

2

j

�

1

2�

jw

2

jkw

2

kku

2

kjAu

2

j+

�

2

jAw

2

j

2

�

1

2�

�

�1=2

1

kw

2

k

2

ku

2

kjAu

2

j+

�

2

jAw

2

j

2

�

1

4�

kw

2

k

2

n

M

2

2

+

1

�

1

jAu

2

j

2

o

+

�

2

jAw

2

j

2

:

Substituting these estimates into (3.12) we obtain

d

dt

kw

2

k

2

� �

4







w

1

(0)







2

+ �

5

kw

2

k

2

(3.13)

where

�

4

(t) = 4

�

3=2

�

1=2

1

M

1

 (t) and �

5

(t) =

1

2�

n

27M

4

2

8�

2

�

1

+M

2

2

+

1

�

1

�

�

Au

2

(t)

�

�

2

o

:

Gronwall's inequality applied to (3.13) yields that







w

2

(t)







2

�







w

2

(0)







2

exp

n

Z

t

0

�

5

(s)ds

o

+







w

1

(0)







2

Z

t

0

�

4

(�) exp

n

Z

t

�

�

5

(s)ds

o

d�:

Sin
e u

2

2 L

2

�

(0; T );D(A)

�

then 
ontinuity with respe
t to the initial 
onditions

follows. In parti
ular, solutions of (3.1) satisfying (3.3) are unique.

Note that the bounds in (3.9) are not uniform in time unless �

2

> 0. This implies

that � must be suÆ
iently large for us to prove that the system (3.1) is dissipative. A

slightly sharper result than the one whi
h results from the above observation appears

as Theorem 3.5 at the end of this se
tion.

The uniqueness given by Theorem 3.1 guarantees that if u

1

(t) and u

2

(t) happen

to agree at some point in time, then they will remain equal for all subsequent times.

In parti
ular, if � = Q

�

u

0

then u

1

(t) = u

2

(t) for all t. The following lemma establishes

bounds on the 
onvergen
e of 
ontinuous data assimilation in terms of time averages
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of the referen
e 
al
ulation u

1

. As � in
reases, the resolution of the measurements

be
omes �ner. Therefore, we expe
t that u

2

(t) be
omes a better and better approxi-

mation of u

1

(t) as �!1.

Lemma 3.2. Let u

1

(t) and u

2

(t) be the unique strong solutions to (3.1) with u

0

=

u

1

(0) 2 V , � = Q

�

u

2

(0) 2 Q

�

V and f 2 L

2

lo


�

(0;1);H

�

given by Theorem 3.1. Then

�

�

u

1

(t)� u

2

(t)

�

�

2

�

�

�

u

1

(0)� u

2

(0)

�

�

2

exp

n

� ��t+




2

1

�

Z

t

0







u

1

(�)







2

d�

o

(3.14)

and







u

1

(t)� u

2

(t)







2

�







u

1

(0)� u

2

(t)







2

exp

n

� ��t+




2

1

��

Z

t

0

�

�

Au

1

(�)

�

�

2

d�

o

: (3.15)

Proof: Let Æ = u

1

�u

2

. Subtra
t the se
ond equation in (3.1) from the �rst to obtain

dÆ

dt

+ �AÆ +Q

�

�

B(u

1

; u

1

)� B(u

2

; u

2

)

�

= 0: (3.16)

Introdu
e �Q

�

B(u

2

; u

1

) and further introdu
e �Q

�

B(u

1

; Æ) into (3.16) to obtain

dÆ

dt

+ �AÆ +Q

�

�

B(Æ; u

1

) + B(u

1

; Æ)� B(Æ; Æ)

�

= 0: (3.17)

We shall make two estimates showing the 
onvergen
e of Æ to zero. First, we �nd


onditions under whi
h

�

�

Æ(t)

�

�

! 0 as t ! 1, and se
ond, we �nd 
onditions under

whi
h







Æ(t)







! 0 as t!1.

We obtain estimates on jÆj by multiplying (3.17) by Æ and integrating. Sin
e

Q

�

Æ = Æ it follows from (2.8) that

1

2

d

dt

jÆj

2

+ �kÆk

2

+

�

B(Æ; u

1

); Æ

�

= 0: (3.18)

Inequality (2.12) followed by Young's inequality yields

�

�

�

B(Æ; u

1

); Æ

�

�

�

� 


1

jÆjkÆkku

1

k �




2

1

2�

jÆj

2

ku

1

k

2

+

�

2

kÆk

2

: (3.19)

Substituting (3.19) into (3.18) obtains

d

dt

jÆj

2

+ �kÆk

2

�




2

1

�

jÆj

2

ku

1

k

2

:

Applying (2.3) to the se
ond term on the left yields

d

dt

jÆj

2

+

n

���




2

1

�

ku

1

k

2

o

jÆj

2

� 0: (3.20)
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Now, Gronwall's inequality yields

�

�

Æ(t)

�

�

2

�

�

�

Æ(0)

�

�

2

exp

n

� ��t+




2

1

�

Z

t

0







u

1

(�)







2

d�

o

Next, we obtain estimates on kÆk by taking the L

2

inner produ
t of (3.17) with

AÆ. Sin
e Q

�

AÆ = AÆ it follows from (2.9) that

1

2

d

dt

kÆk

2

+ �jAÆj

2

+

�

B(u

1

; Æ); AÆ

�

+

�

B(Æ; u

1

); AÆ

�

= 0:

Further applying (2.10) obtains

1

2

d

dt

kÆk

2

+ �jAÆj

2

=

�

B(Æ; Æ); Au

1

�

: (3.21)

Estimate using (2.12) followed by (2.3) and then Young's inequality as

�

�

�

B(Æ; Æ); Au

1

�

�

�

� 


1

jÆj

1=2

kÆkjAÆj

1=2

jAu

1

j

� 


1

�

�1=2

kÆkjAÆjjAu

1

j

�




2

1

2��

kÆk

2

jAu

1

j

2

+

�

2

jAÆj

2

:

Then substitute this estimate into (3.21) to obtain

d

dt

kÆk

2

+ �jAÆj

2

�




2

1

��

kÆk

2

jAu

1

j

2

:

Applying (2.3) to the se
ond term on the left yields

d

dt

kÆk

2

+

n

���




2

1

��

jAu

1

j

2

o

kÆk

2

� 0: (3.22)

Now, Gronwall's inequality yields







Æ(t)







2

�







Æ(0)







2

exp

n

� ��t+




2

1

��

Z

t

0

�

�

Au

1

(�)

�

�

2

d�

o

:

This �nishes the proof of the lemma.

Combining Lemma 3.2 with Lemma 2.4 we obtain rigorous 
onditions on � in

terms of f and � whi
h ensure that 
ontinuous data assimilation works. Namely, we

prove the following version of Theorem 1.5.

Theorem 3.3. Let

M

1

=

n

sup

t>0

1

t

Z

t

0







f(�)







2

�

d�

o

1=2

and M

2

=

n

sup

t>0

1

t

Z

t

0

�

�

f(�)

�

�

2

d�

o

1=2

:
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Then, given a bounded subset B

0

� V and f 2 L

2

lo


�

(0; T );H

�

with M

2

< 1, there

exists K

1

and K

2

large enough su
h that for every u

0

= u

1

(0) 2 B

0

and � = Q

�

u

2

(0) 2

Q

�

V the solutions u

1

(t) and u

2

(t) to (3.1) satisfy

(i) If there exists � su
h that 0 < 2� � ��� 


2

1

�

�3

M

2

1

then

�

�

u

1

(t)� u

2

(t)

�

�

�

�

�

u

1

(0)� u

2

(0)

�

�

K

1

e

��t

for t � 0:

(ii) If there exists � su
h that 0 < 2� � ��� 


2

1

(�

3

�)

�1

M

2

2

then







u

1

(t)� u

2

(t)







�







u

1

(0)� u

2

(0)







K

2

e

��t

for t � 0:

Proof: Let Æ = u

1

� u

2

. To estimate

�

�

Æ(t)

�

�

substitute (2.14) from Lemma 2.4 into

(3.14) from Lemma 3.2 to obtain

�

�

Æ(t)

�

�

2

�

�

�

Æ(0)

�

�

2

exp

�

� ��t+

t


2

1

�

�

1

�t

ju

0

j

2

+

1

�

2

M

2

1

�

�

�

�

�

Æ(0)

�

�

2

exp

n




2

1

�

2

ju

0

j

2

o

exp

�

�

� ��+




2

1

�

3

M

2

1

�

t

�

:

It follows that, if 0 < 2� � �� � 


2

1

�

�3

M

2

1

then

�

�

Æ(t)

�

�

�

�

�

Æ(0)

�

�

K

1

e

��t

where K

1

is


hosen large enough su
h that

K

1

� exp

n




2

1

2�

2

ju

0

j

2

o

for all u

0

2 B

0

:

To estimate







Æ(t)







substitute (2.15) from Lemma 2.4 into (3.15) from Lemma 3.2

to obtain







Æ(t)







2

�







Æ(0)







2

exp

�

� ��t+

t


2

1

��

�

1

�t

ku

0

k

2

+

1

�

2

M

2

2

�

�

�







Æ(0)







2

exp

n




2

1

�

2

�

ku

0

k

2

o

exp

�

�

� ��+




2

1

�

3

�

M

2

2

�

t

�

:

It follows that, if 0 < 2� � ��� 


2

1

(�

3

�)

�1

M

2

2

then







Æ(t)







�







Æ(0)







K

2

e

��t

where K

2

is 
hosen large enough su
h that

K

2

� exp

n




2

1

2�

2

�

ku

0

k

2

o

for all u

0

2 B

0

:

This �nishes the proof.

Corollary 3.4. Under the hypothesis of Theorem 3.3 the approximation u

2


onverges

to u

1

in L

1

�

[0;1℄;V

�

as �!1.

Proof: Sin
e K

2

in Theorem 3.3 may be 
hosen independently of � then







u

1

(t)� u

2

(t)







�







u

1

(0)� u

2

(0)







K

2

e

��t

� K

2







Q

�

(u

0

� �)







! 0
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as �!1.

Proof of Theorem 1.5. Noti
e in the 
ase f is time-independent thatM

1

= kfk

�

and

M

2

= jf j in Theorem 3.3. The proof of Theorem 1.5 then follows from Theorem 3.3

and the fa
t that the global attra
tor of (2.6) is bounded in V .

Note that any bounds on the 
riti
al value of � for whi
h 
ontinuous data as-

similation works must remain invariant under the s
aling presented in (1.8) in order

to be sharp. Sin
e all wave numbers in the original Fourier spa
e are doubled upon

setting ~u

1

(x; t) = 2u

1

(2x; 4t) and

~

f(x) = 8f(2x), then the observational measurements

P

~

�

~u

1

(t) are equivalent to P

�

u

1

(t) exa
tly when

~

� = 4�.

Assume, �rst, that there is a bound on � in terms of kfk

�

whi
h is sharp. In

parti
ular, suppose � � Ckfk

�

�

for some 
onstants C and �. Sin
e k

~

fk

�

= 4kfk

�

then

rewriting

~

� � Ck

~

fk

�

�

in terms of � and f yields 4� � 4

�

Cjf j

�

. It follows that � = 1

and therefore � � Ckfk

�

. However, the �rst bound in Theorem 3.3 depends on kfk

2

�

,

therefore it 
ould not be sharp. Similarly, if � � Cjf j

�

, then res
aling

~

� � Cj

~

f j

�

yields 4� � C8

�

j

~

f j

�

. It follows, in this 
ase, that � = 2=3 and so � � Cjf j

2=3

. Thus,

both of the results in Theorem 3.3 are only upper bounds.

We end this se
tion with a result on the dissipativity of the 
ontinuous data

assimilation equations (3.1). Whether this system of equations is dissipative for all, in

parti
ular smaller, values of � appears to be an interesting open question.

Theorem 3.5. Given for
ing f 2 H and provided that � satis�es (1.10), then the

system of equations (3.1) is dissipative and has an absorbing ball in V .

Proof: Sin
e u

1

satis�es the usual two-dimensional Navier{Stokes equations with

for
ing f 2 H then it has an absorbing ball in V . See, for example, [9℄, [16℄, [39℄ or

[40, 41℄. For u

2

we use Theorem 3.3 to estimate f

2

and use that estimate to �nd an

absorbing ball.

Let Æ(t) = u

1

(t)� u

2

(t). Then (2.4) implies

jf

1

� f

2

j �

�

�

P

�

B(u

2

; u

2

)� P

�

B(u

1

; u

1

)

�

�

�

�

�

P

�

B(Æ; Æ)

�

�

+

�

�

P

�

B(u

1

; Æ)

�

�

+

�

�

P

�

B(Æ; u

1

)

�

�

� �

3=2

�

kB(Æ; Æ)k

�3

+ kB(u

1

; Æ)k

�3

+ kB(Æ; u

1

)k

�3

	

:

For w 2 V

3

the Sobolev embedding krwk

L

1

� Ckwk

3

yields the estimates

�

�




B(Æ; Æ); w

�

�

�

=

�

�




B(Æ; w); Æ

�

�

�

� krwk

L

1

jÆj

2

� Ckwk

3

jÆj

2

�

�




B(u

1

; Æ); w

�

�

�

=

�

�




B(u

1

; w); Æ

�

�

�

� krwk

L

1

ju

1

jjÆj � Ckwk

3

ju

1

jjÆj

�

�




B(Æ; u

1

); w

�

�

�

=

�

�




B(Æ; w); u

1

�

�

�

� krwk

L

1

ju

1

jjÆj � Ckwk

3

ju

1

jjÆj:

If � satis�es inequality (1.10) then Theorem 3.3 implies

�

�

Æ(t)

�

�

! 0 as t!1. Thus,

jf

1

� f

2

j � C�

3=2

�

jÆj

2

+ 2ju

1

jjÆj

	

! 0 as t!1: (3.23)

This implies that f

2

has the same asymptoti
 bounds in time as f .
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Now, Theorem 3.3 implies that for any bounded subset B

0

� V there exists a

time s > 0 su
h that for every u

0

2 B

0

and � 2 Q

�

V the 
orresponding f

2

obeys

�

�

f

2

(t)

�

�

� 2jf j for t > s:

Let

B

1

= fu

2

(s) : u

0

2 B

0

and � 2 Q

�

B

0

g:

Continuous dependen
e on the initial data given by Theorem 3.1 implies that B

1

is

bounded in V . Denote that bound by M

1

. We now estimate







u

2

(t)







.

Multiply the se
ond equation in (3.1) by Au

2

to obtain

1

2

d

dt

ku

2

k

2

+ �jAu

2

j

2

= (f

2

; Au

2

):

Applying Cau
hy-S
hwarz and Young's inequalities gives

d

dt

ku

2

k

2

+ �jAu

2

j

2

=

1

�

jf

2

j

2

:

Applying the Poin
ar�e inequality (2.5) to the se
ond term on the right yields

d

dt

ku

2

k

2

+ ��

1

ku

2

k

2

=

1

�

jf

2

j

2

and integrating over the interval [s; t℄ obtains







u

2

(t)







2

�







u

2

(s)







2

e

���

1

(t�s)

+

1

�

Z

t

s

e

���

1

(t��)

�

�

f

2

(�)

�

�

2

d�

�M

2

1

e

���

1

(t�s)

+

2jf j

2

�

2

�

1

n

1� e

���

1

(t�s)

o

:

Therefore, there exists T > s large enough su
h that for every u

0

2 B

0

and � 2 Q

�

B

0

the solution u

2

to the se
ond equation in (3.1) satis�es

ku

2

(t)k

2

�

3jf j

2

�

2

�

1

for t > T:

Thus, equations (3.1) are dissipative.

Note that (3.23) shows in the 
ase of 
ontinuous data assimilation that

�

�

u

1

(t) �

u

2

(t)

�

�

! 0 as t!1 implies

�

�

f

1

(t)�f

2

(t)

�

�

! 0 as t!1. This same impli
ation does

not hold for two solutions u

1

and u

2

of the Navier{Stokes equations with respe
tive

time-dependent for
ing fun
tions f

1

and f

2

in general. Consider the following simple

example. Let

u

1

=

�

0

(t+ 1)

�1

sin(t+ 1)

2

�


os(x)
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and

u

2

=

�

(t+ 1)

�1


os(t+ 1)

2

0

�


os(y):

Then u

1

and u

2

are solutions of (2.6) with

f

1

=

�

0

2 
os(t+ 1)

2

� (t+ 1)

�2

sin(t+ 1)

2

+ �(t+ 1)

�1

sin(t+ 1)

2

�


os(x)

and

f

2

=

�

�2 sin(t+ 1)

2

� (t+ 1)

�2


os(t+ 1)

2

+ �(t+ 1)

�1


os(t+ 1)

2

0

�


os(y):

Clearly







u

1

(t)� u

2

(t)







�

! 0 as t!1 for any �, however

jf

1

� f

2

j

2

= jf

1

j

2

+ jf

2

j

2

� 4 as t!1:

Therefore,

�

�

f

1

(t)�f

2

(t)

�

�

need not 
onverge to zero as t!1 even though







u

1

(t)�

u

2

(t)







�

! 0 as t ! 1 for any �. This implies that Theorem 1.4, Theorem 1.5 and

Theorem 3.3 
over situations where the hypothesis of Theorem 1.3 are violated. Similar

examples 
an be 
onstru
ted using spatial os
illations whose length s
ales de
rease over

time. For these examples ku

1

� u

2

k ! 0 but jQ

�

f

1

�Q

�

f

2

j does not 
onverge to zero

for any �.

4. Numeri
al Results

In this se
tion we study numeri
ally how the length s
ales present in the for
ing fun
-

tion f a�e
t the rate of 
ontinuous data assimilation and the number of determining

modes. It is worth mentioning that almost all the previous analyti
al studies 
on
ern-

ing the number of degrees of freedom in turbulent 
ow have fo
used on the Grashof

number and almost none have addressed the e�e
t of the spatial stru
ture of the for
ing

on the dynami
s. However, there were some 
omputational results that took the stru
-

ture of the for
ing into 
onsideration. See, for example, the work of Mar
hioro [37℄,

Jolly [29℄, Platt, Sirovi
h and Fitzmauri
e [38℄ and referen
es therein.

Let G(R) and F(�

f

) be as given in the introdu
tion. Thus, G(R) is the set of all

time-independent for
ing fun
tions f with Grashof number Gr(f) = R and F(�

f

) is the

subset of G(R) 
onsisting of the time-independent for
ing fun
tions that are supported

on an annulus in Fourier spa
e 
entered at �

f

of the form (1.11). All 
omputational

experiments were performed with � = 0:0001 and � = 0 on the 2�-periodi
 torus for

for
ing fun
tions with a Grashof number of R = 250000. Our 
omputational results


onsist of two sets of experiments.

For our �rst experiment we sele
t fun
tions from F(�

f

) for values of �

f

ranging

from 25 through 625. We work in the vorti
ity representation. Thus, any f 2 F(�

f

)

may be spe
i�ed in terms of g = r� f a

ording to

^

f

k

=

ĝ

k

k

2

1

+ k

2

2

�

�ik

2

ik

1

�

where g =

X

�

m

�k

2

��

M

ĝ

k

�

k

: (4.1)
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To obtain a representative fun
tion f 2 F(�

f

) for ea
h value of �

f

under 
onsideration,

we take the Fourier 
oeÆ
ients g

k

to be Gaussian distributed, subje
t to the reality


ondition ĝ

k

= ĝ

�k

and normalized so that jf j = 0:0025.

The initial 
ondition u

0

for ea
h 
ontinuous data assimilation experiment was


hosen so that it faithfully re
e
ts the long term energeti
s of the for
ing. This was

done by integrating the Navier{Stokes equations (2.6) starting at time t = �25000

with u

1

(�25000) = 0 until time t = 0. Figure 1 shows the time evolution of ku

1

k,

ju

1

j and ku

1

k

�

for a for
ing fun
tion with �

f

= 25. By the end of the run these

quantities have rea
hed their statisti
ally stationary states. Thus, one 
an assume

that u

0

= u

1

(0) is on the attra
tor. We note that as long as u

0

re
e
ts the long term

energeti
s of the for
ing the exa
t method of its 
hoi
e is not important.

Given a parti
ular for
ing fun
tion and initial 
ondition u

0

the data assimilation

parameter � for P

�

in (3.1) was then varied to determine its e�e
t on the time evo-

lution of ku

1

� u

2

k. As suggested by the bounds in Theorem 3.3 and illustrated in

Figure 2, 
onvergen
e, when it o

urs, is exponential in time. Although 
onvergen
e

is not always monotoni
, it is, on average, exponential. Therefore, a least squares

�t of A exp(��t) to ku

1

� u

2

k was made for ea
h 
omputation to obtain the rate of


ontinuous data assimilation �. Values of � as a fun
tion of � are given in Figure 3

for the experiments with �

f

� 361 and in Figure 4 for the experiments with �

f

� 361.

To provide a de�nite numeri
al 
riterion for dedu
ing the number of determining

modes, let �




be the smallest value of � for whi
h the 
orresponding rate of 
ontinuous

data assimilation � satis�es � � 0:0005. We take the number of determining modes N




to be the rank of P

�

for � = �




. Table 1 summarizes how the number of determining

modes depends on the length s
ales present in the for
ing. Noti
e that the number of

determining modes in
reases as �

f

in
reases from 25 through 361 but then de
reases as

�

f

in
reases from 361 through 625. We remark that the distan
es between su

essive

values of �

f

have been 
hosen to be spa
ed far enough apart to guarantee that kfk

�

will de
rease monotoni
ally as �

f

in
reases.

To 
ompare these results with our theory, substitute (1.12) into (1.10) and use

the bounds on 


1

given in Lemma 2.3 to obtain

�




� min

�




2

1

�

�4

kfk

2

�

; 


1

�

�2

jf j

	

� 


1

�

�2

jf jmin

�




1

�

�2

jf j(�

1=2

f

� 1)

�2

; 1

	

� 539789min

�

539789(�

1=2

f

� 1)

�2

; 1

	

:

Hen
e, when �

f

� 541260 the �rst term in the minimum dominates, and our analyti
al

bound on �




and 
onsequently on N




de
reases as �

f

in
reases. In parti
ular, our

analyti
al estimate on the number of determining modes rea
hes zero for �

f

large

enough. Although our 
omputational estimates are mu
h smaller and start de
reasing

long before our theoreti
al bounds do, it seems reasonable that the observed de
rease

in number of determining modes when for
ing on smaller and smaller s
ales is still

explained by the smallness of the V

0

norm of f when �

f

is large.

Something unexplained by our analysis appears to be happening for values of �

f

between 25 and 361. The number of determining modes in
reases as �

f

in
reases. In
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an intuitive sense, this 
an be seen as an extrapolation of the fa
t that when �

f

= 0:7

Theorem 1.7 implies that the dynami
s are trivial. To shed further light on this 
ase

let us �rst examine the energy spe
tra of the referen
e 
al
ulations. Let

E(r) = L

2

X

k2J

r

jû

k

j

2

where J

r

=

�

k 2 J : r � 1=2 < jkj � r + 1=2

	

and de�ne




E(r)

�

= lim

T!1

1

T

Z

T

0

E(r) dt:

The average energy spe
trum of the referen
e 
al
ulation u

1


orresponding to ea
h of

the for
ing fun
tions in Table 1 is shown in Figure 5. Here we have estimated the limit

at T ! 1 by taking T = 10000. Note that as �

f

in
reases, the amount of energy in

the high modes in
reases and a peak around �

f

be
omes apparent. Also note that the

total energy in the low modes de
reases as �

f

in
reases.

Thus, there are two plausible explanations for the observed in
rease in the number

of determining modes as �

f

ranges from 25 to 361. This in
rease might be 
aused by

an in
reases of energy in the high modes of u

1

or it might be 
aused by a de
rease of

energy in the low modes. If we suppose that the small s
ales are generated from the

large s
ales, then a de
rease of energy in the low modes would leave less large s
ale

motion to generate the small s
ales, and therefore lead to an in
rease in the number of

determining modes. To test this hypothesis a se
ond set of experiments was 
ondu
ted.

Given f

L

2 F(25) and f

H

2 F(484) we set f = �

L

f

L

+ �

H

f

H

where �

2

L

+ �

2

H

= 1.

In this way we obtain for
ing fun
tions that are supported on two disjoint annuli in

Fourier spa
e|one on small wave numbers, the other on large. Here �

L

and �

H

are

parameters determining the relative weights of the large and small length s
ales in the

for
ing. When �

H

is 
lose to zero f may be viewed as the perturbation of the large

s
ales f

L

by the small s
ales f

H

; when �

L

is 
lose to zero f is the perturbation of the

small s
ales f

H

by the large s
ales f

L

. The values of � for these 
omputations are

presented graphi
ally in Figure 6. Table 2 indi
ates how the number of determining

modes depends on �

L

and �

H

. Note that the perturbation of the large s
ales f

L

by

the small s
ales f

H

does not signi�
antly 
hange the number of determining modes,

whereas the perturbation of the small s
ales f

H

by the large s
ales f

L

dramati
ally

a�e
ts the number of determining modes. This is 
onsistent with our hypothesis that

it is the absen
e of the large s
ales in the for
ing whi
h are primarily responsible for

the in
rease in number of determining modes as �

f

ranges from 25 through 361 in the

�rst set of experiments.

Further eviden
e in support of this hypothesis may be obtained by examining the

averaged energy spe
trum in Figure 7 of the referen
e 
al
ulation u

1


orresponding to

ea
h of the for
ing fun
tions in Table 2. The most dramati
 
hanges in the number of

determining modes 
orresponds primarily to 
hanges in the energy of the low modes

of the energy spe
trum.

It is amusing to note that the �rst three 
olumns in Table 2 are qualitatively un-


hanged by taking �

H

= 1 in ea
h of them. In this 
ase we obtain a sequen
e of for
ing
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fun
tions that in
reases in all norms while at the same time the 
orresponding number

of determining modes de
rease. A dis
ussion of this seeming paradox and an expla-

nation for it in terms of a Reynolds number based on the observational measurements

P

�

u

1

(t) shall be explored, if eÆ
able, in a future work.

5. Computational Methods

Numeri
al 
omputations for this paper were 
arried out using a C 
ode written by the

authors in 
onjun
tion with the Fourier transform library of Frigo and Johnson [26℄.

The a
tual 
al
ulations were made on mi
ro
omputers running the GNU/Linux oper-

ating system and LAM/MPI at the University of Nevada, Reno and at the University

of California, Irvine. Corre
t behavior of our 
ode was veri�ed by 
omparison to

existing programs written by Mike Jolly and Stephen Montgomery.

We use a spe
tral Galerkin method and 
ompute the two-dimensional in
ompress-

ible Navier{Stokes equations in its vorti
ity form

�!

�t

� ��! + (u � r)! = g (5.1)

where ! = r�u and g = r� f . Note that the one-third rule was used avoid aliasing,

see Canuto, Hussaini, Quarteroni and Zang [3℄. In terms of its Fourier de
omposition

(5.1) be
omes

d!̂

k

dt

+ �k

2

!̂

k

+ ik � 
u!

k

= ĝ

k

: (5.2)

Following Henshaw, Kreiss and Reyna in [27℄, we integrate the dissipative term

expli
itly to obtain

d

dt

n

!̂

k

exp(�k

2

t)

o

+ ik � 
u!

k

exp(�k

2

t) = ĝ

k

exp(�k

2

t) (5.3)

and then integrate the remaining terms using a third order Adams{Bashforth s
heme.

Initial time steps are 
omputed via a fourth order Runge{Kutta s
heme.

Let ŵ

j

denote the Fourier transformed vorti
ity at time t

j

= j�t. Let

� = diag

�

: : : ; �(k

2

1

+ k

2

2

); : : :

�

and

F (t; ŵ) = �ik � 
u!

k

+ ĝ

k

:

Using these notations, the fourth order Runge-Kutta s
heme used in our 
al
ulations

may be written

K

1

= F (t

j

; ŵ

j

)

K

2

= F

�

t

j

+�t=2; e

���t=2

(ŵ

j

+K

1

�t=2)

�

K

3

= F

�

t

j

+�t=2; e

���t=2

ŵ

j

+K

2

�t=2

�

K

4

= F

�

t

j

+�t; e

���t

ŵ

j

+ e

���t=2

K

3

�t

�

ŵ

j+1

= e

���t

ŵ

j

+ (�t=6)

�

e

���t

K

1

+ 2e

���t=2

(K

2

+K

3

) +K

4

�
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and the third order Adams{Bashforth s
heme may be written

ŵ

j+1

= e

���t

ŵ

j

+

�t

12

n

23e

���t

F (t

j

; ŵ

j

)

� 16e

�2��t

F (t

j�1

; ŵ

j�1

)

+ 5e

�3��t

F (t

j�2

; ŵ

j�2

)

o

:

In our analysis, the for
ing fun
tion f and the dynami
al equations governing

the evolution of u

1

were assumed to be known exa
tly. Furthermore, the observable

measurements P

�

u

1

(t) were assumed to be error free. Therefore, if u

1

(t) and u

2

(t)

happen to be equal at any time t, then they will remain equal for all subsequent times.

We would like our numeri
al 
omputations to re
e
t these assumptions as 
losely

as possible. To ensure our 
omputations of u

1

and u

2

are identi
al, we dis
retize the

equations governing u

1

and u

2

in exa
tly the same way and use the same exe
utable

program to 
ompute ea
h solution. This avoids any variations in automati
 
ompile-

time optimizations. Furthermore, we expli
itly spe
ify the pro
essor dependent run-

time optimizations used by the Fourier transform library [26℄. Additional 
are was

taken when implementing the 
ontinuous data assimilation to ensure that the exa
t

values of P

�

u

1

were used in a way that doesn't a�e
t the dis
rete dynami
s. Thus, sin
e

we are using a three step method for the time integrator, if the numeri
al solutions

u

1

(t) and u

2

(t) are bit for bit equal at any three 
onse
utive times t

j

, t

j�1

and t

j�2

,

then they will remain bit for bit equal for all subsequent times.

To ensure suÆ
ient 
omputational resolution and stability, the CFL 
ondition and

the 
ondition on the degrees of freedom in two-dimensional turbulen
e given in [27℄

were monitored for all 
omputational runs. Let n by n be the grid size in physi
al

spa
e and �t be the size of the time step. Let u and v be the x and y 
omponents of

Eulerian velo
ity �eld. The CFL 
ondition may be expressed as

CFL =

n�t

2L

sup

x2


�

juj+ jvj

	

� 1

and the 
ondition on degrees of freedom may be expressed as

k

max

= �

�1=2

sup

x2


�

�

�

�

�u

�x

�

�

�

;

�

�

�

�v

�x

�

�

�

;

�

�

�

�u

�y

�

�

�

;

�

�

�

�v

�y

�

�

�

�

1=2

�

n�

L

:

For our �nal 
al
ulations we took � = 0:0001, L = 2�, n = 169 and �t = 0:04.

Thus, the Fourier transforms used to evaluate the non-linear term were performed on

a 256 by 256 spatial grid. Given these parameters, our �nal 
al
ulations obeyed

CFL � 0:92 and k

max

� 82

and should, therefore, be well resolved.

Dependen
e of our numeri
al results on resolution was also studied dire
tly. It

should be noted that our experiment involves integrating a system with sensitive de-

penden
e on its initial 
onditions over a very long period of time. Thus, given di�erent
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values for n and �t otherwise identi
al 
al
ulations of u

1

will di�er after long enough

time. Even for identi
al values of n and �t these 
al
ulations were observed to di�er

depending on the 
ompiler and level of optimization used. The best we 
an hope for

is that statisti
al properties in
luding the rate of 
ontinuous data assimilation and

number of determining modes remain un
hanged. A number of preliminary tests with

f , � and u

0

�xed were made to determine how our results depend on the exa
t values

of n and �t. Figure 9 illustrates the evolution of ku

1

� u

2

k for a set of resolution

tests. These tests were 
ondu
ted with the data assimilation parameter � = 26 and

the for
ing fun
tion from Table 1 with �

f

= 64. It is 
lear that the rate of 
ontinuous

data assimilation is independent of the resolution of the 
omputation. Thus, we hope

that our results are reasonably free from numeri
al artifa
ts.

Re
all that the amplitudes of the Fourier 
omponents of f were 
hosen randomly

with respe
t to a Gaussian distribution. Thus, our exa
t 
hoi
e of f for ea
h exper-

iment was somewhat arbitrary. Table 3 explores for �

f

= 64 how the randomness in

our 
hoi
e of Fourier 
omponents for f a�e
t the rate of 
ontinuous data assimilation.

Noti
e that the V and V

0

norms of f vary by about one per
ent while the resulting

rate of 
ontinuous data assimilation � varies by about three per
ent. We suppose all

our results are within this margin for any reasonably probable 
hoi
e of f .

Table 3. Di�erent versions of for
ing fun
tions supported

on the length s
ales around �

f

= 64. The rate � was mea-

sured for 
ontinuous data assimilation on N = 88 modes.

Version kfk jf j kfk

�

�

1 0.01928 0.0025 0.0003272 0.0105127

2 0.01905 0.0025 0.0003309 0.0102093

3 0.01921 0.0025 0.0003287 0.0099258

4 0.01923 0.0025 0.0003282 0.0104484

5 0.01919 0.0025 0.0003292 0.0112591

An essential feature of a typi
al for
ing fun
tion is that the spatial length s
ales

are 
learly exhibited while at the same time there are no additional symmetries. This

feature is illustrated in Figure 8 whi
h gives the 
onstant level 
urves of r� f for the

for
ing fun
tion with �

f

= 64 from Table 1. If, for example, f had additional periodi


stru
ture, then the initial 
ondition u

0

and 
onsequently u

1

and u

2

would also have

this periodi
 stru
ture. Thus, a res
aling su
h as in (1.8) would be possible. One 
ould

not expe
t the results from Table 1 to be relevant for su
h for
ing fun
tions.

One �nal remark is on our pro
edure for determining �




experimentally. Re
all

that �




was de�ned to be the smallest value of � su
h that � � 0:0005. This 
uto�

was 
hosen simply so that the evolution of ku

1

� u

2

k need not be 
omputed for times

mu
h greater than t = 25000 to distinguish 
ases of 
onvergen
e from non-
onvergen
e.

Therefore, it is possible that smaller values of � would also show 
onvergen
e. In su
h


ases our �




still provides an upper bound on the number of determining modes, only

perhaps not quite as sharp as possible.
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Figure 1. Evolution of ku

1

k, ju

1

j and ku

1

k

�

for �

f

= 25

shows that initial data for the 
ontinuous data assimilation

experiment is very 
lose to the global attra
tor.
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Figure 2. Evolution of ku

1

�u

2

k with �

f

= 64 for 
ontin-

uous data assimilation on N Fourier modes. Convergen
e,

when it o

urs, is exponential in time.
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Figure 3. Rate of 
ontinuous data assimilation for for
-

ing supported on length s
ales between �

f

= 25 and 361.

The horizontal line at � = 0:0005 represents the 
uto� for

dedu
ing the number of determining modes.
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Figure 4. Rate of 
ontinuous data assimilation for for
ing

supported on length s
ales between �

f

= 361 and 625.

The horizontal line at � = 0:0005 represents the 
uto� for

dedu
ing the number of determining modes.
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Figure 5. Time averages of the energy spe
trum of u

1

show a 
hara
teristi
 peak around �

f

for for
ing fun
tions

supported on small length s
ales. The average was 
om-

puted by taking T = 10000.
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Figure 6. Rate of 
ontinuous data assimilation for the

for
ing fun
tion f = �

L

f

L

+ �

H

f

H

where f

L

2 F(25) and

f

H

2 F(484). The horizontal line at � = 0:0005 represents

the 
uto� for dedu
ing the number of determining modes.
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Figure 7. Time averages of the energy spe
trum of u

1

for

f = �

L

f

L

+ �

H

f

H

where f

L

2 F(25) and f

H

2 F(484).

The average was 
omputed by taking T = 10000.
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Figure 8. Constant level 
urves of g = r� f for �

f

= 64

illustrate the length s
ales present in the for
ing.
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Figure 9. The evolution of ku

1

� u

2

k for di�erent values

of n and �t with � = 26 and �

f

= 64 shows that the rate of


ontinuous data assimilation is unrelated to the numeri
al

resolution. The solid line represents the resolution of our

�nal 
al
ulations. Other resolutions have been o�set by

de
ades for 
larity.
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