
CHAOS
An Interactive Timeshared Operating System for the 8080

BY JEFF LEVINSKY
3632 Governor Drive
San Diego, CA 92122

CHAOS, an acronym for the Clairemont High Advanced
Operating System, and its successor, CHAOS II*, are time-
shared interactive systems which operate on the 8080 micro-
processor. The following provides an overview of the goals of
the system, examples of how CHAOS is used, and a descrip-
tion of the internal structure o f the system, with a brief dis-
cussion of the implementation of directories and command
processing. For further information, references to other arti-
cles and texts are included.

Origins o f CHAOS

The initial design for CHAOS was based upon the needs of
a secondary school computer course. Typical computer re-
sources of many high schools consist o f a single port con-
nected to a district-owned BASIC timesharing computer or to
a state or university consortium. Since only one student at a
time may use the computer, each student in a class of 30
receives under nine minutes of time per week. Expansion by
purchasing additional ports is limited by the high cost ($7500
is a usual price for a single port). Alternatively, microprocessor
systems with multiple floppy disk drives can be obtained for
under $3000, and with CHAOS, additional users can be
added for about $1000 each. Moreover, an onsite computer
system can be tailored to better fit the educational needs of
the users. For example, the primary concern in the design for
CHAOS was the availability of several languages (BASIC, 8080
assembly/machine, a system command (job control) language,
PASCAL, FORTRAN, and COBOL for business-oriented
students) and individual accounts for students as well as
mechanisms for shared files and an ‘explorable’ structure. This
last goal was especially chosen for the highly motivated and
gifted students who frequently wish to delve into the workings
of the commands and internals o f the system —such activity is,
in terms of CHAOS, to be encouraged, as the result is a source
of knowledgeable system operators and valuable insight into
system deficiencies. Of course, CHAOS is protected from non-
privileged users. Security is partly maintained by the directory
system, and teachers using the system to handle grading or
other confidential files can elect to use a separate floppy disk
for total protection. In practice, each class also has a separate
floppy disk, in order to make better use of disk drives, which
appear to be the most costly unit. Finally, the presence of a
complete computer at the school proves far more stimulating

*Since the layout of CHAOS and CHAOS II, as opposed to the
actual code, is essentially the same, ‘CHAOS’ will be used
when no distinction between the two systems is necessary.

Page 6

to students, especially those interested in hardware, than does
a simple remote terminal.

The UNIX™ system, developed by Bell Labs for the PDP-
11 computer series, served as the external model for CHAOS.
Internally, UNIX contains some well-conceived and relatively
simple features that CHAOS was unable to emulate, due to
the limitations of the 8080 processor and the inefficiency of
floppy disk storage. To produce a smaller and faster system,
the majority of CHAOS is written in assembly language, as
opposed to a high level language such as C. CHAOS II was
developed with both hard disks and 16-bit processors such as
the Z8000 in mind, so that performance can be upgraded with-
out extensive software revision. CHAOS, like UNIX, is design-
ed to be simple for the novice to use as well as a powerful and
flexible tool in the hands of the experienced. Unlike bare-
bones operating systems and exclusively high level systems,
such as CP/M and UCSD PASCAL, respectively, CHAOS
attempts to provide a full spectrum 'of computer capabilities.

A Sam ple Lesson

Let us imagine a student, named Fred, approaching CHAOS
to write a program that will average together numbers stored
in a file for one or more files. First, Fred must log onto the
system (system responses are in boldface):

:login: fred
password:
CHAOS II
System backup at 3 pm.
You have mail.
%

After the password has been correctly entered (it does not
echo), some system messages are printed and then the percent-
age sign prompt is given. Mail may be obtained by:

%mail
From ethel 9:30 AM Tue Sept 5 1978
Club meeting after school.
%

‘Mail’ is an example of a command and is actually a non-resi-
dent program brought temporarily into Fred’s work area.

Since the averaging program will be written in BASIC, that
language is entered:

% basic
OK

CHAOS uses MITS BASIC Version 4.1 which provides a full
set of string and file capabilities. The BASIC is actually always
resident—the command ‘basic’ merely routes the user into it.
The substance of the program is now entered:

Number 31Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

4

10 REM PROGRAM TO PRODUCE F ILE AVERAGES

20 SUM-0 'SUM OF ENTRIES

30 C0UNT=0 'COUNT OF ENTRIES

100 REM ACCEPT F ILE NAME

110 LINE INPUT " F IL E ? " ; F ILE$

120 IF F IL E $ = "" THEN END

130 OPEN " I " , 1 , F ILE ?

200 REM SUM AND COUNT ENTRIES

210 IF EOF(1) THEN CLOSE : GOTO 300

220 INPUT # 1 , NUM

230 SUM=SUM+NUM : C0UNT=C0UNT+1

240 GOTO 200

300 REM OUTPUT

310 IF C0UNT=0 THEN PRINT "NO ENTRIES" ELSE PRINT SUM/COUNT

320 GOTO 100

and tested:
RUN
FILE? DATA1
32.778

Here, AVERAGE was run just as a command—which is not
surprising given that the commands ‘mail,’ ‘basic,’ and ‘dir’
are all actually written in BASIC.

The argument facilities exist as system calls and are avail-
able in BASIC to privileged users. CHAOS offers an all-or-
none policy in this area: either one has or does not have access
to BASIC commands such as POKE and OUT and the ability
to make system calls. The right to use these is known on
CHAOS as ‘FRIBL’ (pronounced ‘fribble’). A CHAOS com-
mand such as ‘dir’ may have ‘FRIBL’ although the user who
executes the command does not. One way that Fred may
obtain ‘FRIBL’ is to move from his directory into the direc-
tory ‘master,’ in which a special version of the command
‘basic’ exists. Since Fred has a pointer to ‘master’ (see the
results of ‘dir’ above), he transfers directories by:

% chdir master
and then enters the version of BASIC which gives him ‘FRIBL.’
Although in BASIC, Fred can still transfer back to his own
directory, which is what ‘ . . . ’ refers to here*:

% frbasic
OK
chdir
OK

The modified version of AVERAGE that uses the argument
facility is:

FILE? DATA2 20 SUM=0 'SUM OF ENTRIES

29.14
FILE?

30 C0UNT=0 'COUNT OF ENTRIES

OK 40 ARG=2 'ARGUMENT NUMBER

50 DIM M(5) 'ARRAY FOR SYSTEM CALLS

Now, the program is stored (in Fred’s directory by default) 60 FRIBL 'T H IS COMMAND NEEDS FRIBL

and BASIC is exited: 100 REM ACCEPT FILE NAME

SAVE“AVERAGE”
OK

120 G0SUB 9000

CHAOS
%

320 END

Fred can now check that the file indeed is in his directory
via the command ‘dir’: 9000 REM READS ARGUMENT #ARG INTO FILES

% dir 9010 M(0)= 3 6 'SYSTEM CALL NUMBER

average
9020 M(1) =ARG

datal
data2 9030 x = u s r o (v a r p t r (m (o)))

master 9040 X - l : F 1LE$= " "

stuff
%

9050 FILE $=FILE S + CHR$(PEEK(M (4)) AND 127)

More information about the contents of the directory could be
obtained by

%dire -al
where the ‘a’ and ‘1’ are flags interpreted by ‘dir’ as a signal
to provide special options. Commands may inspect flags and
other arguments typed upon the command line at will. In
this case, ‘a’ causes all filed in the directory to be listed
normally files with names beginning with a period are not
printed out) and ‘1’ causes length, access, and disk information
to be given for each file. At any rate, Fred can run his new
program without re-entering BASIC:

% AVERAGE
FILE? DATA2
29.14

9060 IF (P E E K (M (4)) AND 128) = 0 THEN M(4) =M() + 1 : GOTO 9050

9070 RETURN

Lines 130 through 310 are the same as before. The subroutine
at 9000 reads in the argument ARG from the command line
into the string FILES. There are several ways to accomplish
this. Here the pointer to the start of the argument returned
by the system call in M(4) is used to PEEK out the characters
(the most significant bit being on only in the last character
of the argument). FRIBL at line 60 can only be entered here
because Fred already has FRIBL.

Number 31

*Paths are dynamic in CHAOS, as opposed to static on UNIX.

Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 7

5

Again, the program is stored and run back at the system
level:

SAVE“AVERAGE”
OK
CHAOS
% AVERAGE DATA2
29.14

%
Now, however, averaging is only accomplished for a single file.
To permit several files to be averaged, one could write a loop
in BASIC to increment ARG (null arguments can be tested
for), but CHAOS itself provides an alternative method. This
consists of writing a file o f commands known as a “shell”
file (the command line processor is known as the “shell")
to make use of some argument processing commands. In this
case, Fred produces the shell file ‘AVERAGER’ which con-
tains the following text lines:

:loop
if $2a a ; exit
echo $2
average $2
shift ; goto loop
When the shell file is executed, each command inside is

executed in turn. The first command here begins with a colon,
and serves only as a place holder for the label ‘loop.’ The ‘i f
command in the next line compares two strings/arguments
for equality, in this case the ‘$2a’ against the ‘a.’ A dollar
sign followed by a number is a macro, and so ‘$2a’ will be
replaced by the second argument on the command line with
AVERAGER with an ‘a’ appended at the end. If this is a null
argument, then ‘$2a’ will match ‘a’ and thus the exit command
on the same line will be executed causing the whole shell
file to terminate. If some argument ‘$2a’ does exist, then
‘exit’ will not be executed. On the next line, ‘echo’ is used
simply to print the second argument out, and after that,
the average of the file is printed. ‘Shift’ causes arguments to
be shifted to the left, so that what was the third argument to
AVERAGER will become the second. Finally, the ‘goto’
will cause a jump back to the first line for another averaging.

To use AVERAGER, Fred merely says:
% AVERAGER DATA2 DATA1
DATA2
29.14

DATA1
32.778

%
At this point, Fred may wish to have AVERAGE and
AVERAGER moved into the root directory so that all users
can access them. Then, by typing a control -d, Fred exits from
the system:

% d
: login:

A few observations can be made here. From the user’s
viewpoint, the command developed above is convenient as the
standard system-wide format for the arguments is easy to
remember. Having developed a command that becomes avail-
to all users, Fred is motivated to continue to produce and to
upgrade. Meanwhile, other programmers can readily incorp-
orate AVERAGE or AVERAGER into their commands using
the capabilities of either BASIC or the SHELL. CHAOS also
permits commands to be written in native code, and these
may also invoke other commands and make system calls.

UnFRIBLed users may run and debug 8080 machine code,
but only under the watchful eye of a simulator which prevents
system crashes. Finally, if Fred is on a multi-user version of
CHAOS, other users may at the same time be running and
debugging commands/programs independently. Of course,
the system has safeguards to prevent file modification from
occurring while others are using the same file.

The Structure o f CHAOS II

CHAOS II consists of about 10K of code which resides in
the lower 32K of memory alongside the 20K MITS BASIC.
The system is both conceptually and physically divided into
a series of nested levels, which are diagrammed in Figure 1.
The contents of a given level may call upon an inner level
for assistance, but the reverse is not permitted. For example,
the lowest level is the 8080 hardware: this is used by all other
levels but cannot itself use any of the software in those levels.
One may be reminded of a black hole, into which any object
may be sent, but from which no object will emerge. Each
level other than level 0 consists of a number of carefully
defined system calls, such as the one used above to obtain a
pointer to a shell argument. Typically, each level is written,
tested, and documented by one person. Briefly, these levels
are:

Documentation

Languages and Commands

Files and Directories

Input/Output

Figure 1. CHAOS System Structure

Level 0: The 8080 hardware required to run CHAOS can
consist of no more than a standard MITS 8080 floppy disk
system with about 40K of memory, if only a single-user
version is required. The system is configured as shown in
Figure 2 with BASIC and CHAOS in the low 32K, the user’s
system variables in the 33rd K of memory, and with the
remainder serving as the user’s workspace.

Page 8 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 31

6

upto 31K

I
32K

user
variables

user workspace

Figure 2. Single User Configuration

If multiple users are to be supported, then one of two configu-
rations is possible. In the first, shown in Figure 3, a separate
IK variable area is provided for each user and all workspaces
are located in the single upper block of memory. All of the
variable areas are addressed the same but only one may be
active at a given time.

32K IK 31K

I
system user workspaces

user blocks
bank selectable

Figure 3. Multi-user configuration

This is controlled by a signal output to a parallel port which
in turn selects one of eight ‘banks’ from a memory board,
as is shown in Figure 4. The front board in that figure is active
only when the low IK of the boards is being addressed—other-
wise the rear board is enabled.

Figure 4. Multi-user control hardware

When large workspaces are required, the configuration
given in Figure 5 is used. Under this method, both the IK
variable spaces and the workspaces are selected by the signal
sent to the port. The hardware to implement this is shown
in Figure 6, and consists only of a decoder connected so as
to disable all but one set of 16K boards, i.e., all but those of
the active user.

user workspaces
bank selectable

Figure 5. Multi-user configuration

Figure 6. Multi-user control hardware

Level 1 : The kernel provides each user/process with a slice
of computer time, maintains the system clock, and provides
some interprocess synchronization. The kernel handles inter-
rupts and controls the memory switching described above
for multi-user systems. Within the kernel, a circular queue
of active processes is kept for use in scheduling. If a process
requests a semaphore (a P operation) when the semaphore is
currently unavailable, the process is suspended from the
circular queue and placed upon a FIFO queue associated with
the semaphore. When another process then releases the sema-
phore (a V operation), a process from the corresponding sema-
phore queue is then restored to the active queue.

Level 2\ Memory management consists of the allocation of
segments within each user’s workspace. The layout of the
typical workspace is shown in Figure 7: a stack of segments
grows upwards from the bottom of the workspace while the
8080 stack grows downwards from the top. Each segment is
either a program/command or a special data area required by
a program. The segments are handled similarly to ‘activation
records’ in programming languages and system calls exist to
create, modify, and remove these.

Number 31 Dr. Dobb's Journal of Computer Calisthenics &Orthodontia, Box E, Menlo Park, CA 94025 Page 9

7

hir;h memory

Figure 7. User's workspace and segments

Level 3: Input/output constitutes a minor part o f CHAOS as
complex buffering and device drivers are avoided. At least
in secondary schools, students enter data relatively slowly
and do not want blindingly fast screen listings. Therefore, no
tremendous efficiency is required. In the multi-user version
of CHAOS II, vectored interrupts can be added to achieve
somewhat smoother input/output, especially as disk head
motion need not lock onto the processor.

Level 4 : Files and directories are quite elaborate in CHAOS
as evidenced by the example given above. Essentially, a dir-
ectory is simply a file of pointers to other files, and therefore
directories may point to other directories (as ‘fred’ pointed to
‘master’). In CHAOS II, file and directory functions are
primarily handled by modified code from the BASIC.

Level 5: The Shell was already introduced as the program
responsible for processing command lines. How it operates
is explained more thoroughly below, but its position in the
hierarchy is clear here, for it must rely upon input/output
to receive the commands from the user, upon memory
management to create and remove the segments to hold the
commands, and upon the file and directory system to locate
and to read in the commands. The Shell is probably the most
independent of all the levels described so far, and certainly
other shells which act in quite different ways can be used.
In fact, halfway through the debugging of the original CHAOS,
one shell was pulled out and another substituted in for it
without more than a handful of errors.

Level 6: Languages and commands are properly one level
outside of the Shell, although parts of BASIC occur at inner
levels as much of the BASIC code is used for input/output and
for files. Several options exist for other languages: a Tiny-
LISP and the 8080 simulator fit into a user’s workspace under
all configurations, while large languages require a full 3 IK
workspace as do most business application packages.

Level 7: Documentation is of crucial importance on CHAOS
since users have a variety o f backgrounds and interest. After
the UNIX fashion, each command and system call is given a
one or two page summary which provides adequate inform-
ation in most cases. Commonly used programs, such as the

text formatter (word processor) and the BASIC are also
described by tutorials which emphasize examples that users
may actually type in and try. On a larger scale, the system is
described by a set of charts which show the flow of control
in operations such as argument parsing and directory search-
ing. Finally, a current project is the completion of a manual
detailing the overall operation of the system through diagrams
and text, o f which a condensed and simplified version will
be provided to users seeking only general knowledge. CHAOS
itself is expected to assist in documentation both by facilitat-
ing the production of manuals and updates and by providing
a complaint facility through which frustrated command users
may communicate with those responsible for maintaining the
system.

The CHAOS D irectory System

Each file on CHAOS is described by a file pointer which
can be defined in PASCAL as:

type
ftype = (basic, text, assembly, random, directory);
rights = (w, o, r, e);
file pointer = record

name:
origin:
access:
owner:
lastwritten:
case oftype:

array [1..8] of char;
integer; [sector and track #]
set of rights;

filepointer:
date;
ftype of

basic, text, assembly, random: (length: integer)
directory: (quota: Integer)

end;
With this, we might define a directory as:

directory = set of filepointer;
(although this isn’t legal PASCAL). How directories are
actually implemented is not of importance: in CHAOS both
files of descriptors and a common single disk directory
(volume table of contents) have been used.

indicates a
directory

Figure 8. Simple Directory Structure

Page 10 Dr. Dobb's Journal o f Computer Calisthenics & Orthodontia, Box E, Menlo Park, C A 94025 Number 31

8

Mainly to introduce some notation, Figure 8 shows ‘direc-
tory 1’ which owns two entries: ‘directory2’ and ‘file 1 On
each arrow are the access rights for the entry. These govern
what operations a user in ‘directory 1’ can perform upon the
entries. The four possible access rights are:

w = write access
r = read access
e = execute access
o = override access

Having override access permits any operation to be performed.
Access rights are also associated with a user in a given direc-
tory. To actually compute what access is permitted for an
entry, the access rights associated with the owning directory
are anded with those associated with the entry itself. This is
best illustrated by example. Suppose that a user has r and e
access when in ‘directory 1’. If that user accesses ‘file l’, then
the rights are computed as:

- r e
wor-

—r-
The file can only be read. On the other hand, if the user has
just o access for ‘directoryl’, then the rights computed for
‘file l’ are:

-o--
wor-
-o--

Here, since override access exists, all operations can be per-
formed upon the file. When a user elects to change from one
directory to another, the user’s rights for the new directory
are computed in the same manner. Supposing that a user has
o and r access in ‘directoryl’, the access rights for the user
upon transfering into ‘directory2’ will be computed as:

-or-
w-re
— r -

When the user returns to ‘directoryl’, the o and r status will
be restored.

average

Figure 9. Directory structure for 'fred'

Figure 10. Directory structure for 'master' and 'root'

Figure 9 illustrates the directory ‘fred’ used in the sample
session above. Since the data files are not generally execut-
able, they are by default not given e access. Assuming that
Fred had o access when in his directory, those data files could
still have been executed by him —in which case they are
treated as shell files. When Fred moves into ‘master’, he
retains all possible rights. Figure 10 shows the typical struc-
ture of ‘master’. The program ‘login’ controls the actual
logging-on of users into CHAOS and accesses the passwords
file. The directory ‘master’ then also contains pointers to all
directories into which users may intially enter.

Number 31 Dr. Dobb's Journal of Computer Calisthenics &Orthodontia, Box E, Menlo Park, CA 94025 Page 11

c h d i r

9

Since file pointers are constrained to point only to files
on their disk (to allow single disks to be unmounted), ‘master’
is actually spread across all disks. One other directory of
importance is ‘root’ as it contains all of the typically used
system commands. The Shell first searches a user’s directory
for a file to execute and then, if the file is not found, the
‘root’ directory. Each user has an implicit pointer to ‘root’
with w, r, and e access. Hence, a user referencing the command
‘chdir’ when not in ‘root’ will have access rights computed
as:

w-re
-o-e
—e

and will only be able to execute. In this example, the user will
have only r access to the directory of source code and to the
messages file. On the other hand, a user transferring into or
logging into ‘root’ via ‘master’ will have full access rights due
to the presence of the override access in all of the pointers
within ‘root.’ Presumably, if a user turns off all rights on a
pointer to a directory and then transfers into that directory,
no operations will be possible. For this reason, the implicit
access to ‘root’ is fixed rather than computed: the user will
always be able to call ‘chdir’ in order to return to the original
directory.

Figure 11. Directory structure for a class

In a classroom situation, access rights and directories
become quite useful, especially as multiple pointers to direct-
ories may exist (multiple pointers to regular files are not
typically permitted, to avoid the issue of choosing which
owner is to be charged for the file’s length). A common

Page 12

directory for a class is shown in Figure I I . The directory
‘class’ is akin to ‘root’ in that the students may only execute
while the teacher has full access to the quiz files. The directory
‘land2’ exists so that two students may both work on a game
program that is protected from other users. Of course, a user
with access to ‘master’ has access to all directories under
normal circumstances.

Im plem entation o f the Shell

No doubt the most interesting feature of CHAOS, due to
its command and argument processing abilities, is the Shell.
Strictly speaking, the Shell is a function which processes one
or more command lines to obtain a boolean result indicating
the success or failure of the commands. The ‘i f command
presented earlier is capable of using the boolean value returned
as a conditional, as are assembly language programs. A few
variants of the function shell exist: shellf executes a shell
file, and shelli produces an interactive shell (one that prints
prompts and accepts command lines from the terminal-
exiting only after a control-d is typed).

Since a shell file may, for example, invoke another shell
file or an interactive shell, the shell function is recursive. The
command lines and/or pointers into them are kept within a
segment created for a specific invocation of the shell function.
A segment associated with an interactive shell is dynamic
in size as command lines inputted vary in length. A typical
interactive shell segment is shown in Figure 12. Shell segments
also contain a list o f processed arguments from the command
line currently being executed. These arguments can be acces-
sed in various ways by the system calls contained in the Shell
level of the system.

Figure 12. Interactive shell segment

The general algorithm for the shell function is very straight-
forward:

function shell (commandline: array [1 . .n] of char):
boolean;

status: boolean;
begin

status: = true;
repeat

process command line;
if legal then status: = shell(command)

else status: =false
until endoffile or (status = false);
shell: = status

end;

Dr. Dobb's Journal o f Computer Calisthenics & Orthodontia, Box E, Menlo Park, C A 94025 Number 31

10

The function shelli is slightly different in that it prints a
prompt and requests a new line whenever an end-of-line
is reached or an error in a command line is found. Non-inter-
active shells return upon an error: therefore when a shell
file is found to be incorrect, execution of it will terminate and
control will be returned to an interactive shell or machine
language program. This may cause intermediate shell files
to also terminate—the flow of control is handled auto-
matically by the shells.

About half of the Shell is devoted to command line
argument processing and especially to the generation of
argument lists. In general, an argument is a string of characters
delimited by blanks or other special characters. The command
‘chdir master’ consists of two arguments: the first argument is
taken of course to be the name of the file to be executed.
Arguments may contain special characters through the use of
quoting, which entails either surrounding the argument with
single or double quote marks or by turning off the special
meaning of a character by preceding it by a backslash. For
example, to run the command whose name is *;*, one might
say:

% ‘ or or % \;
however ‘ ’ would not work as the semicolon would be
taken as a command separator (in this case separating two null
commands).

In addition to quoting and macros, CHAOS’ Shell permits
what is often called argument list generation or wild-character
file names. Whenver certain characters are found (unquoted)
in an argument, the Shell no longer treats the argument liter-
ally but instead takes it to be a pattern to be matched against
the names of all files in the current directory. Those names
which match are then included into the argument list (in
alphabetic order). The special characters and their meanings
are:

? matches any single character.
[defines the beginning of a character class.] defines

the end. Characters appearing between the square
brackets are all potential matches for a single charac-
ter in a file name. Hence ‘ [abed] ’ would match a
single ‘a’, ‘b’, ‘c’, or ‘d’. A shorthand for this is
‘ [a -d]’. If the character directly following the ‘ [’
is a dash, then the character class matches any charac-
ter but those appearing inside (i.e., the intial dash
negates the meaning). Since ‘ [] ’ matches no charac-
ter, ‘ [-] ’ matches all and is equivalent to *?’.

* signifies that zero or more of the previous character
or character class may be matched.

Some examples may clarify how file names can be selected
using these patterns. Say that the current directory contains
the files ‘d a ta l’,‘data2’, ‘data33’, and ‘datum’. Then typing:

% print data?
is equivalent to typing:

% print datal data2
as the question mark matches the ‘1’ and then ‘2’. Neither
‘datum’ nor ‘data33’ was included in the list because the ‘u’
or the final ‘3’ did not match. On the other hand,

% print dat??
is equivalent to:

% print datal data2 datum

To get all file names of the form data<digit>, one might use
‘d a ta [0 -9] \ This would not match a file named ‘datam’
for example. To also match ‘data33’, one might use ‘data

Number 31

[0-9] The asterisk applies in this case to the character
class and causes zero or more digits to be matched, that is,
both ‘data’ and ‘datal 234567’ will also match this pattern.
More generally, *?*’ will match any file name (the question
mark is optional in this case).

To process a command line, Shell repeatedly calls a scan
function which in turn examines the command line for a single
argument, appends one if found to the argument list at the
end of the shell segment, and then reports back via a flag
whether or not the end-of-line has been located. The scan
function identifies quoted arguments, tracks down macros,
and supervises argument expansion. The actual procedure to
compare a pattern to a file name is somewhat complex, as
recursion is required to handle patterns such as ‘a*b*’, and
is based upon programs published in Software Tools (see
References).

Finally, given the directory structure and shell calls out-
lined above, the actual external appearance of the system can
be very easily described. The ‘login’ command in the master
directory prints the request for a directory name and a pass-
word, and then determines whether such a directory exists
and if the password is correct—using the pointers from
‘master’ to establish the user’s original directory and access
rights. Thus, each user is initialized to run the following:

program chaos;
const crash=false;

begin
repeat

shell (“login”);
shelli

until crash
end

R eferences

For information on CHAOS and CHAOS II, write to Mary Elizabeth
Kroening, 3632 Governor Drive, San Diego, California, 92122. Persons
interested in specific applications of CHAOS II, such as in education,
medical research, or business should ask for details on the high-level
system packages being developed for these areas.

Brooks, Frederick P., Jr. The Mythical Man-Month. Menlo Park:
Addison-Wesley Publishing Company, 1975.

Gries, David. Compiler Construction for Digital Computers. New
York: John Wiley & Sons, 1971.

Kernighan, Brian W., and Plauger, P.J. Software Tools. Menlo Park:
Addison-Wesley Publishing Company, 1976.

Ritchie, Dennis M„ and Thompson, Ken. "The U NIX Timesharing
System." Communications o f the ACM, X V II 7 (July, 1974),
365-375.

Shaw, Alan C. The Logical Design o f Operating Systems. Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1974.

Wirth, Niklaus, and Jensen, Kathleen. PASCAL User Manual and
Report. New York: Springer-Verlag, 1975.

Dr. Dobb's Journal of Computer Calisthenics StOrthodontia, Box E, Menlo Park, CA 94025 Page 13

11

