
Research Summary

My research currently focuses on the following areas:

1. Embedding Theorems and Fractal Dimension

2. Alpha Models of Turbulence

3. Normal Forms of the Navier–Stokes Equations

4. Continuous and discrete-in-time Data Assimilation

This year my work with Abrahim Azouani and Edriss Titi on continuous data assimila-
tion using general interpolant observables appeared in Nonlinear Science. I’m currently
finishing two papers: one on the Assouad dimension and another on data assimilation of
stochastically noisy data. Three more papers are in preparation.

Embedding Theorems and Fractal Dimension

My thesis was on embedding theorems and orthogonal projections. The motivation behind
studying the continuity properties of orthogonal projections lies in the theory of exponen-
tial attractors developed in [2]. In particular, given an infinite dimensional dissipative
evolution equation the goal is to create a system of ordinary differential equations that
have the same exponential attractor. This amounts to projecting the attractor of the in-
finite dimensional dynamical system into a finite dimensional space and transferring the
dynamics to that space by means of the inverse projection. The first result of my thesis
was to extend the Hölder–Mane projection theorem in [1] from finite dimensional spaces
to infinite dimensional spaces. Namely, I proved

Theorem. Let H be a real Hilbert space and X ⊂ H be such that dimf(X) < m/2.
Then for any orthogonal projection P of rank m and δ > 0 there is an orthogonal

projection P̃ such that ‖P̃ − P‖ < δ and P̃ |X has Hölder inverse.

This result was published with Foias in [4] and has been cited 39 times by independent
researchers on MathSciNet.

The Hölder continuity of the inverse projection given in [4] and [7] is not sufficient
to prove that solutions to the resulting finite system of ordinary differential equations are
unique. For uniqueness it is necessary to have an inverse that is Lipschitz with at most an
order 1 logarithmic correction term. Building upon my result in [8] for finite dimensional
spaces, Robinson and I [9] show in infinite dimensional spaces that the set of orthogonal
projections whose inverses are Lipschitz up to a logarithmic correction are prevalent in
the sense of Hunt, Sauer and Yorke [6]. We do this for attractors X for which the set of
differences X −X has finite Assouad dimension.

Note the Assouad dimension dima(X −X) <∞ for any dynamical system possessing
an inertial manifold. Denote the box counting dimension by dimf . It is well known that
dimf(X −X) ≤ 2 dimf(X). However, a similar inequality does not, in general, hold true
for the Assouad dimension. In particular, assume X ⊂ H where H is a Hilbert space
and suppose X is connected and consists of at least two points. We show in [9] that
there exists a C∞ bi-Lipschitz map ψ:H → H arbitrarily close to the identity such that
dima(ψ(X) − ψ(X)) = ∞. Xander Henderson wrote his master’s thesis [5] under my
supervision. In that work, among other things, he shows there are self similar sets X ⊂ R

such that dima(X) = ǫ but dima(X −X) = 1. Thus, bounds on dima(X −X) are delicate
and difficult to obtain even for very regular fractals.
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In collaboration with Fraser, Henderson and Robinson I have recently shown in [3] that
the notion of a grid-like iterated function system appearing in Henderson’s thesis is related
to the weak separation property of Martin Zerner [10]. This allows us to prove that if an
iterated function system possesses the weak separation property then dimaX = dimf X.
Moreover, if the iterated function system does not posses the weak separation property,
then dimaX ≥ 1. A paper is currently in progress discussing this result.
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Indiana Univ. Math. J. 45 (1996), no. 3, 603–616.

[5] X. Henderson, Assouad Dimension and the Open Set Condition, UNR Master’s
Thesis, 2013.

[6] B.R. Hunt, T. Sauer, and J.A. Yorke, Prevalence: a translation-invariant almost
every for infinite dimensional spaces. Bull. Amer. Math. Soc. 27 (1992), 217–238;
Prevalence: an addendum. Bull. Amer. Math. Soc. 28 (1993), 306–307

[7] B.R. Hunt, V.Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal
sets into finite-dimensional spaces, Nonlinearity 10 (1997), 1031–1046.

[8] E. Olson, Bouligand dimension and almost Lipschitz embeddings, Pacific J. Math.

202 (2002), no. 2, 459–474.

[9] E. Olson, J. Robinson, Almost Bi-Lipschitz Embeddings and Almost Homogeneous
Sets, Trans. Amer. Math. Soc. 352 (2010), no. 1, 145–168.

[10] M. Zerner, Weak separation properties for self-similar sets, Proc. Amer. Math. Soc.

124 (1996), no. 11, 3529=3539.

Alpha Models of Turbulence

As a student I spent half a year at the Center for Nonlinear Studies at Los Alamos Na-
tional Laboratory. Here I met and worked with Shiyi Chen, Darryl Holm, Edriss Titi and
Shannon Wynne along with my thesis advisor Ciprian Foias on the viscous Camassa–Holm
equations, now known as the LANS-α model. Our work involved using the time indepen-
dent LANS-α model as a closure for the Reynolds equations. This closure matched with
experimental data and resulted in the three papers [1,2,3] with Chen, Foias, Holm, Titi
and Wynne. These papers have been cited more than 200 times.

I continued to study the LANS-α model as an NSF postdoc with Edriss Titi University
of California Irvine. I extended my work on Gevrey regularity of the LANS-α model to
cover a family of Navier–Stokes-α like models involving fractional derivatives and published
this as [4]. We also developed a simplified version of the LANS-α model similar to the
regularization used by Leray in 1934 for his studies of the Navier–Stokes equations. These
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results along with computations and some additional scaling arguments regarding the
energy spectrum were published with Cheskidov and Titi in [5].

Averaging the Navier–Stokes equations in the Lagrangian picture subject to appro-
priate geometric constraints and assumptions have yielded turbulence models with very
interesting conservation properties. Of related interest are the Navier-Stokes-Voight equa-
tions and the LANS-α–β models. I’m currently interested in using data assimilation to
study these models of turbulence computationally.
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Reaction Equations in Porous Media

My work in the area of bioremediation began with a grant from the Nevada NSF EPSCoR
Advanced Computing in Environmental Sciences (ACES) program with Dr Satoko Ku-
rita to study the bioremediation of contaminated soil. This grant supported Dr. Kurita
as a research postdoc from January 2004 though December 2004. During this time we
adapted the fractional order time and diffusion equations developed by Schumer, Benson,
Meerschaert and Baeumer [4] with Dr. David Benson at the Desert Research Institute
and Dr. Mark Meerschaert in the Mathematics Department at UNR to add dynamics for
bacteria growth and and interaction with nutrients in a way consistent with the model
by Dr. Kurita [3] and also [2]. In addition we developed a numerical code based on the
fractional Adams method of Diethelm, Ford and Freed [1] for integrating fractional-in-time
PDEs. This work is currently in progress.
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Normal Forms of the Navier–Stokes Equations

I have published two papers [3] and [4] on the normal forms of the Navier–Stokes equations.
These works were completed with Foias, Ziane and Luan and based based on a construc-
tion by Foias and Saut in [1,2]. Using a Phragmen–Lindelof type theorem obtained by
bootstrapping a theorem of F. and R. Nevanlinna we obtained recursive estimates on the
norms of the components Wn(u0) of the normal form W (u0). These estimates then al-
lowed the construction of a norm on the range of the normalization map for all u0 ∈ R,
where R ⊆ H1(Ω)3 is the set of initial data that lead to regular solutions. Future work is
planned to obtain estimates on the monomial terms of a specified degree in the asymptotic
expansions and to further understand analyticity properties of the normalization map near
the origin. We are also looking at the case with forcing.
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Continuous and Discrete-in-time Data Assimilation

My research on continuous and discrete-in-time data assimilation can be viewed in two
ways: first as computational and theoretical results that provide insight on the practical
problem of weather forecasting and second as a dynamical systems experiment to study
non-linear dynamical systems. Charney, Halem, and Jastrow introduced in [1] the method
of continuous data assimilation in which this time series is used to find a more accurate
description of the current state of the atmosphere. Suppose u is given by

du

dt
= F(u), u(t0) = u0 (1)

and the observations of u are given by the time series p(t) = Pu(t) for t ∈ [t0, t∗] where P
is an orthogonal projection. Since we don’t know u0, the idea is to solve

dq

dt
= (I − P )F(q + p), q(t0) = q0 (2)

where q0 is an arbitrarily chosen initial condition. Then q+p represents the approximation
of u given by the method of continuous data assimilation. For the model problem of
the two-dimensional incompressible Navier–Stokes equations Titi and I use the theory of
determining modes to find conditions on P and f such that

∥

∥p(t) + q(t)− u(t)
∥

∥

L2
→ 0 as t→ ∞.

Our first paper [6] studies how the length scales present in the forcing affected the number
of numerically determining modes, the second paper [8] studies how the Grashof number
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affects the number of numerically determining modes and the third [4] extends these results
to the case where the observational data is available only at discrete time intervals.

A second approach to data assimilation introduced by Azouani, Olson and Titi in [9]
uses feedback control. Given a system

du

dt
= F(u)

and an interpolant observable satisfying an inequality of the form

‖u− Ih(u)‖
2
L2 ≤ c1h

2‖u‖2H1 + c2h
4‖u‖2H2 (3)

an approximation v is then computed from the observations Ih(u) using the equation

dv

dt
= F(v) + µ

(

Ih(u)− Ih(v)
)

. (4)

This method is more general than the method described in equation (2) because the in-
terpolation of the observations does not need to be given by an orthogonal projection
nor does it need to take values in the domain of F . For the model problem of the two-
dimensional incompressible Navier–Stokes equations we prove provided h is small enough
and µ appropriately chosen that

∥

∥v(t)− u(t)
∥

∥

L2
→ 0 as t→ ∞.

The method is simple, works for a general class of observables with no additional ad hoc

filtering and our analytical bounds on the resolution of the observations are comparable
up to a logarithmic correction to previous estimates for equation (2).

Masakazu Gesho performed computations of (4) in his master’s thesis under my su-
pervision. He considered the two-dimensional incompressible Navier–Stokes equation on
2π-periodic domain Ω and took Ih to be the interpolation on nodal values given by

Ih(u)(x, t) =
N
∑

i=1

u(xi, t)χQi
(x)

where Qi are disjoint squares that cover Ω and xi are the center points of the Qi. Gesho’s
computations showed there is a wide range of good values for the relaxation parameter µ
and that algorithm (4) works computationally just as well as equation (2). These results
are currently being prepared for publication.

The algorithm given by equation (4) also makes sense in the presence of stochastic
errors. Suppose instead of observing Ih(u) directly, that we know only Ĩh given by

Ĩh(u)dt = Ih(u)dt+ dW

where dW represents a Wiener process modelling the measurement errors. Replacing Ih(u)
by Ĩh(u) in equation (4) we arrive at the stochastic differential equation

dṽ = F (ṽ) + µ(Ih(u)− Ih(ṽ))dt+ µdW
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Let σ2 be a parameter related to the variance of the error represented by W . I prove with
Bessaih and Titi in [10] that if h is small enough, then there exists µ such that

ǫ̃min = lim sup
t→∞

E
[

‖ṽ(t)− u(t)‖2L2

]

≤ Cσ2.

Thus, the difference between the approximate solution and exact solution is within a factor
of the error present in the measurements.

I developed a discrete in time data assimilation algorithm with Hayden and Titi in
[4]. Let ψi be the eigenfunctions of the Stokes operator A with eigenvalues λi. Let Pλu
be the L2-orthogonal projection onto the space Hi = span{ψi : λi ≤ λ }. Suppose the
observational data for u is given by Pλ(u(tn)) where tn = n∆t. Conditions were found for
the 2D NSE that guaranteed an approximating solution converged to the exact solution.
A paper is in preparation by Olson and Titi [7] to cover the case of discrete in time general
interpolant observables which satisfy the inequality (3). In this case the observational data
is given by Ih(u)(x, tn) for n ∈ N and the algorithm given in [4] may be generalized as
follows: Define J = PλIh and E = I − J . Then the approximation v is given by











v0 = Ju0

vn+1 = ES(∆t, vn) + Ju(tn+1)

v(t) = S(t, vn) for t ∈ [tn, tn+1)

where S represents the solution semigroup of the 2D NSE equations. Note that taking
Ih = Pλ yields the original algorithm discussed in [4]. In [7] it is shown that for any
∆t > 0 there exists h and λ such that ‖v(t)− u(t)‖L2 → 0 as t→ ∞.

Three papers are in progress and an NSF grant proposal joint with Hakima Bes-
saih, Aseel Farhat and Mike Jolly entitled Determining Forms and Data Assimilation with
Stochastically Noisy Data has been submitted and is currently pending review.
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