The important lines subtract from \(v = a_j \) its projection onto each \(q_i \):

\[
 r_{kj} = \sum_{i=1}^{m} q_{ik} v_{ij} \quad \text{and} \quad v_{ij} = v_{ij} - q_{ik} r_{kj}.
\]

Starting from \(a, b, c = a_1, a_2, a_3 \) this code will construct \(q_1, B, q_2, C, q_3 \):

\[
q_1 = a_1 / \|a_1\| \quad \text{and} \quad B = a_2 - (q_1^T a_2) q_1 \quad q_2 = B / \|B\| \\
C^* = a_3 - (q_1^T a_3) q_1 \quad C = C^* - (q_2^T C^*) q_2 \quad q_3 = C / \|C\|
\]

Equation (12) subtracts off projections as soon as the new vector \(q_k \) is found. This change to "subtract one projection at a time" is called *modified Gram-Schmidt*. That is numerically more stable than equation (8) which subtracts all projections at once.

```
for j = 1:n
  v = A(:,j);
  for i = 1:j-1
    R(i,j) = Q(:,i)^*v;
    v = v - R(i,j)*Q(:,i);
  end
  R(j,j) = norm(v);
  Q(:,j) = v/R(j,j);
end
```

To recover column \(j \) of \(A \), undo the last step and the middle steps of the code:

\[
R(j,j)q_j = (v \text{ minus its projections}) = (\text{column } j \text{ of } A) - \sum_{i=1}^{j-1} R(i,j)q_i.
\]

Moving the sum to the far left, this is column } j} \text{ in the multiplication } A = QR.

Confession Good software like LAPACK, used in good systems like MATLAB and Octave and Python, will not use this Gram-Schmidt code. There is now a better way. “Householder reflections” produce the upper triangular \(R \), one column at a time, exactly as elimination produces the upper triangular \(U \).

Those reflection matrices \(I - 2uu^T \) will be described in Chapter 9 on numerical linear algebra. If \(A \) is tridiagonal we can simplify even more to use 2 by 2 rotations. The result is always \(A = QR \) and the MATLAB command is \([Q, R] = qr(A)\). I believe that Gram-Schmidt is still the good process to understand, even if the reflections or rotations lead to a more perfect \(Q \).
The vectors \(a \) and \(A \) and \(q_1 \) are all along a single line.

The vectors \(a, b \) and \(A, B \) and \(q_1, q_2 \) are all in the same plane.

The vectors \(a, b, c \) and \(A, B, C \) and \(q_1, q_2, q_3 \) are in one subspace (dimension 3).

At every step \(a_1, \ldots, a_k \) are combinations of \(q_1, \ldots, q_k \). Later \(q \)'s are not involved. The connecting matrix \(R \) is triangular, and we have \(A = QR \):

\[
\begin{bmatrix}
a & b & c \\
q_1 & q_2 & q_3 \\
q_1^T a & q_1^T b & q_1^T c \\
q_2^T b & q_2^T c \\
q_3^T c \\
\end{bmatrix}
= A = QR.
\]

\(A = QR \) is Gram-Schmidt in a nutshell. Multiply by \(Q^T \) to see why \(R = Q^T A \).

(Gram-Schmidt) From independent vectors \(a_1, \ldots, a_n \), Gram-Schmidt constructs orthonormal vectors \(q_1, \ldots, q_n \). The matrices with these columns satisfy \(A = QR \). Then \(R = Q^T A \) is upper triangular because later \(q \)'s are orthogonal to earlier \(a \)'s.

Here are the \(a \)'s and \(q \)'s from the example. The \(i, j \) entry of \(R = Q^T A \) is row \(i \) of \(Q^T \) times column \(j \) of \(A \). This is the dot product of \(q_i \) with \(a_j \):

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
-1 & 0 & -3 \\
0 & -2 & 3 \\
\end{bmatrix} = \begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\
-1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\
0 & -2/\sqrt{6} & 1/\sqrt{3} \\
\end{bmatrix} \begin{bmatrix}
\sqrt{2} & \sqrt{2} & \sqrt{18} \\
0 & -\sqrt{6} & -\sqrt{6} \\
0 & 0 & -\sqrt{3} \\
\end{bmatrix} = QR.
\]

The lengths of \(A, B, C \) are the numbers \(\sqrt{2}, \sqrt{6}, \sqrt{3} \) on the diagonal of \(R \). Because of the square roots, \(QR \) looks less beautiful than \(LU \). Both factorizations are absolutely central to calculations in linear algebra.

Any \(m \) by \(n \) matrix \(A \) with independent columns can be factored into \(QR \). The \(m \) by \(n \) matrix \(Q \) has orthonormal columns, and the square matrix \(R \) is upper triangular with positive diagonal. We must not forget why this is useful for least squares: \(A^T A \) equals \(R^T Q^T QR = R^T R \). The least squares equation \(A^T A \bar{x} = A^T b \) simplifies to \(Rx = Q^T b \):

Least squares \(R^T R \bar{x} = R^T Q^T b \ \text{or} \ Q \bar{x} = Q^T b \ \text{or} \ \bar{x} = R^{-1} Q^T b \)

Instead of solving \(Ax = b \), which is impossible, we solve \(R \bar{x} = Q^T b \) by back substitution—which is very fast. The real cost is the \(mn^2 \) multiplications in the Gram-Schmidt process, which are needed to construct the orthogonal \(Q \) and the triangular \(R \).

Below is an informal code. It executes equations (11) and (12), for \(k = 1 \) then \(k = 2 \) and eventually \(k = n \). The last line of that code normalizes to unit vectors \(q_j \):

Divide by length \(q_j = \text{unit vector} \)

\[
q_{jj} = \left(\sum_{i=1}^{m} v_{ij}^2 \right)^{1/2} \quad \text{and} \quad q_{ij} = \frac{v_{ij}}{r_{jj}} \quad \text{for} \quad i = 1, \ldots, m.
\]
qr demo -- QR factorization using LAPACK
Written November 26 by Eric Olson

This program uses LAPACKE compiled with ATLAS BLAS. The example performs the following steps:

1. Given A we call LAPACKE_dgeqrf which overwrites A with the results of the QR decomposition.

2. Extract the upper triangular matrix from the output and store it as the matrix R.

3. Call LAPACKE_dormqr to multiply R by Q and store the product overwriting matrix R.

4. Compute the error between QR and the original matrix.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <lapacke.h>

void vecprint(int n, double v[n]) {
 int j;
 for (j = 0; j < n; j++)
 printf("%10.2e%c", v[j], j == n - 1 ? '\n' : ' ');
}

void matprint(int n, double A[n][n]) {
 int i;
 for (i = 0; i < n; i++)
 vecprint(n, A[i]);
}

int main() {
 printf("qr demo -- QR factorization using LAPACK Version 2\n";
 "Written November 26 by Eric Olson\n\n");
 int i, j, n = 5;
 double A[n][n], tau[n];
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 A[i][j] = i * n + j;

 printf("A=\n");
 matprint(n, A);
 LAPACKE_dgeqrf(LAPACK_ROW_MAJOR, n, n, A[0], n, tau);
 printf("output from dgeqrf=\n");
 matprint(n, A);
 printf("tau=\n");
 vecprint(n, tau);
 double R[n][n];
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 R[i][j] = j < i ? 0 : A[i][j];

 printf("R=\n");
 matprint(n, R);
 LAPACKE_dormqr(LAPACK_ROW_MAJOR, 'L', 'N',
 n, n, n, A[0], n, tau, R[0], n);
 printf("QR=\n");
 matprint(n, R);

 double rmserr = 0.0;
for(i = 0; i < n; i++)
 for(j = 0; j < n; j++) {
 double t = R[i][j] - (i * n + j);
 rmserr += t * t;
 }
 rmserr = sqrt(rmserr / n / n);
printf("error=\n%23.15e\n", rmserr);
return 0;