

1 Intuitive Definition of a Limit Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

<mark>julia></mark> Q(0.0) NaN cant hold the bow in exactly the direction of a.

The "builseye" as much as you like...

	ð		
trauple.			_
	_	y=Hlt)	-
H(f)= 1 if t>0	_		-
ζ, , , , , , , , , , , , , , , , , , ,			
		1.9 2\2.1 t	
lim H(t) = lim 1 = 1	_	2,01	
セプ2 セプ2	1		
t>0	t	H(t)	
	9.1	1	
	1,9	1	
		_	

8,01

lum H(t) = does not exist		
+>0 DNE	t	HIt)
T 10		
	<i>6</i> (\
70	.01	1
((2))	•	h
	(
arrow painting	100-	0
slightly up hits 1	1000, -	D
	10001	1
slightly down hits 0		
		20 211 21 19

No approximating any identifially result as t->0.

On the other hand if to them that = 1 so

On the other hand if to them Hltl=0 =0

$$\lim_{t\to 0^-} H(t) = \lim_{t\to 0} H(t) = \lim_{t\to 0} D = 0$$
from the left $t < 0$

Definition of One-Sided Limits We write

$$\lim_{x \to a^{-}} f(x) = L$$

and say the **left-hand limit of** f(x) **as** x **approaches** a [or the **limit of** f(x) **as** x **approaches** a **from the left**] is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Definition of One-Sided Limits We write

$$\lim_{x \to a} f(x) = L$$

and say the **Left-hand limit of** f(x) as x approaches a [or the **limit of** f(x) as x approaches a from the **Left**] is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

4 Intuitive Definition of an Infinite Limit Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Definition Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

better and better approx of $-\infty$

The Quiz on Thursday covers

• Homework 1: Section 2.2#4,5,6,7,8,9

Note this homework is not to turn in, only to prepare for the oping and aid in understanding.

Example from after class

4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.

a.
$$\lim_{x \to 2^{-}} f(x) = 3$$

b.
$$\lim_{x \to 2^{+}} f(x)$$
 =

 $c. \lim_{x \to 2} f(x) = docs$ not exist because (a) and (b) are different.

not calculus
$$\rightarrow$$
 d. $f(2) = 3$

e.
$$\lim_{x \to 4} f(x) = 4$$

$$\mathfrak{s}f. f(4) = \mathsf{DNE}$$

Calculas

not calculus no point on graph