Notation

\mathbb{R} is the set of real numbers.
$\mathbb{N}=\{1,2,3, \ldots\}$ is the set of positive integers (or natural numbers).
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of integers.
$\mathbb{Q}=\{m / n: m, n \in \mathbb{Z}, n \neq 0\}=\{m / n: m \in \mathbb{Z}, n \in \mathbb{N}\}$ is the set of rational numbers.
$\mathbb{R} \backslash \mathbb{Q}$, the complement of \mathbb{Q} in \mathbb{R}, is the set of irrational numbers.
Idle: Burse the theory of Calculus of a small set of axioms.

Axiom 2.1

$$
\begin{aligned}
a+b & =b+a \\
a \cdot b & =b \cdot a
\end{aligned}
$$

Field cexioms of R (commutative laws)
Axiom 2.2 For all c in \mathbb{R},

$$
\begin{aligned}
a+(b+c) & =(a+b)+c \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c \quad \text { (associative laws) }
\end{aligned}
$$

Axiom 2.3 For all c in \mathbb{R},

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad(\text { distributive law })
$$

Axiom 2.4 There exist distinct real numbers 0 and 1 such that for all a in \mathbb{R},

$$
a+0=a
$$

$$
a \cdot 1=a \quad \text { (identity elements) }
$$

Axiom 2.5 For each a in \mathbb{R}, there is an element $-a$ in \mathbb{R} such that

$$
a+(-a)=0
$$

and for each b in $\mathbb{R}, b \neq 0$, there is an element $b^{-1}=1 / b$ in \mathbb{R} such that

$$
b \cdot \frac{1}{b}=1 . \quad \text { (inverse elements) }
$$

Order axioms of \mathbb{R}
Axiom 2.6 For all a and b in \mathbb{R}, exactly one of the following holds:

$$
a=b, a<b, b<a
$$

(trichotomy).
Axiom 2.7 For all a, b, and c in \mathbb{R}, if $a<b$, then $a+c<b+c$.
Axiom 2.8 For all a, b, and c in \mathbb{R}, if $a<b$ and $0<c$, then $a c<b c$.
Axiom 2.9 For all a, b, and c in \mathbb{R}, if $a<b$ and $b<c$, then $a<c$ (transitivity).

Axiom 2.10 The positive integers are well-ordered.
a set P is well ordered if every ron -empty subset of $A \subseteq F$ has a least element. Thus. If $A \subset F$ and $A \neq \varnothing$ then there is $a_{0} \in A$

Therein $C_{2} 3$ git. $a_{0} \leqslant a$ for all $a \in A$.
A is wed l ordered $\underset{ }{\rightleftarrows}$
The principle of mothematical induction holds
$r \Rightarrow$ cert there \Rightarrow to show eqgivalut
but since well assume \mathbb{N} is vel ordered an are axiom in Chapter 2 , I'll only present the direction \Rightarrow " hare..

Proof.
Suppose N is joel ordered. Steed to show that if (1) $p(1)$ is trine
and (2) $p(n) \Rightarrow p(n+1)$ for all $n \in \mathbb{N}$
then $p(n)$ is true for all $n \in \mathbb{N}$.
For contradiction, supprosethe priciple of quothernetical indirection does nit hold true. Thus there is or $p(u)$ aswich satisfies (1) ad (2) but for which $p(x)$ is NOT TRUE for all $A E \mathbb{N}$. Define $A=\xi n: p(\pi)$ is false $\}$. Thew $A \neq \varnothing$. Since $A \subseteq \mathbb{N}$ and \mathbb{N} is well ordered them there exists $n_{0} \in A$ st. $n_{0} \leqslant n$ for all $n \in A$.
Since $p(1)$ is true. Then $n_{0}>1$. because $1 \notin A$.
If follows $n_{0}-1>0$. Which means $n_{0}-1 \in \mathbb{N}$.
Claim $p^{\left(n_{0}-1\right)}$ is frae. If not than $n_{0}-1 \notin A$ bat then $n_{0} \leq n$ for all $n \in A$ implies $n_{0} \leq n_{0}-1$ which is false. Thus $\rho\left(n_{0}-1\right)$ is true.
by (2) $p\left(n_{0}-1\right) \Rightarrow p\left(n_{0}\right)$ so $p\left(n_{0}\right)$ is true.
That complies $n_{0} \notin A$. This coutradiets $n_{0} \in A$
Decimal representation of \mathbb{R}. Show that \mathbb{R} cectically exists... $x \in \mathbb{R}$ is given by

$$
x=n_{0} a_{1} a_{2} a_{3} a_{4} \cdots
$$

aohere $n \in \mathbb{Z}$ and $a_{i} \in\{0,1, \ldots, 9\}$.

From an iafiaute series point of view.

$$
x=n+\sum_{i=1}^{\infty} \frac{1}{10^{i}} a_{i}
$$

to recall

Note we haven't discussed licuits so dour think about where this converges, get.
Notes a fraction con be converted to a repeating decimal using division.
The other way... Excaupe...

$$
\begin{aligned}
& 3.612 \overline{12}=3.6 \overline{\sqrt{2}} \\
& 3+\frac{6}{10}+\left(\frac{1}{10^{2}}+\frac{2}{10^{3}}\right)+\left(\frac{1}{10^{4}}+\frac{2}{104}\right)+\cdots \\
&=3+\frac{6}{10}+\frac{1}{10^{2}}\left(\left(1+\frac{2}{10}\right)+\frac{1}{10^{2}}\left(1+\frac{2}{10}\right)+\cdots\right) \\
&=3+\frac{6}{10}+\frac{1}{10^{2}}\left(1+\frac{2}{10}\right)\left(1+\frac{1}{10^{2}}+\frac{1}{10^{4}}+\cdots\right) \\
& S=1+\frac{1}{100}+\left(\frac{1}{100}\right)^{2}+\left(\frac{1}{100}\right)^{2}+\cdots \\
& \frac{1}{100} S=\left(1+\frac{1}{100}+\left(\frac{1}{100}\right)^{2}+\left(\frac{1}{100}\right)^{3}+\cdots\right) \frac{1}{100}
\end{aligned}
$$

Subtract

$$
\begin{aligned}
& S=1+\frac{1}{100}+\left(\frac{1}{100}\right)^{2}+\left(\frac{1}{100}\right)^{3} \\
& \frac{1}{100} S=\frac{1}{100}+\left(\frac{1}{100}\right)^{2}+\left(\frac{1}{100}\right)^{3}+ \\
& S-\frac{1}{100} S=1 \text { so } S=\frac{1}{1-\frac{1}{100}}=\frac{100}{99} \\
& 3.6 \sqrt{2}=3+\frac{6}{10}+\frac{1}{10^{2}}\left(1+\frac{2}{10}\right) \frac{100}{99}
\end{aligned}
$$

this is a fraction
Finish reading Section 2.1 about (x)

$$
|x|=\left\{\begin{array}{cc}
x & \text { for } x \geqslant 0 \\
-x & \text { for } x<0
\end{array}\right.
$$

aud prove the properties of $|x|$ uscey the definition - For excumple.

$$
|a||b|=|a b|
$$

or

$$
|a+b| \leqslant|a|+|b|
$$

Proofs follow the for or in eases
Case $a \geqslant 0$ and $b \geqslant 0$
Case $a<0$ and $b \geqslant 0$
Case $a \geqslant 0$ and $b<0$
Core $a<0$ and $b<0$.

