Notation

 \mathbb{R} is the set of real numbers.

- $\mathbb{N} = \{1, 2, 3, ...\}$ is the set of positive integers (or natural numbers).
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of integers.
- $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z}, n \neq 0\} = \{m/n : m \in \mathbb{Z}, n \in \mathbb{N}\}$ is the set of rational numbers.

 $\mathbb{R} \setminus \mathbb{Q}$, the complement of \mathbb{Q} in \mathbb{R} , is the set of irrational numbers.

Ide: Buse the theory of Calculus of a small set of axioms.

Axiom 2.1 a + b = b + a $a \cdot b = b \cdot a$ Field exisms of R

(commutative laws)

Axiom 2.2 For all c in \mathbb{R} , a + (b + c) = (a + b) + c

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

(associative laws)

Axiom 2.3 For all c in \mathbb{R} ,

 $a \cdot (b+c) = a \cdot b + a \cdot c$ (di

(distributive law)

Axiom 2.4 There exist distinct real numbers 0 and 1 such that for all a in \mathbb{R} , a + 0 = a $a \cdot 1 = a$ (identity elements)

Axiom 2.5 For each a in \mathbb{R} , there is an element -a in \mathbb{R} such that a + (-a) = 0

and for each b in \mathbb{R} , $b \neq 0$, there is an element $b^{-1} = 1/b$ in \mathbb{R} such that

 $b \cdot \frac{1}{b} = 1.$ (inverse elements)

Order axisms of TK					
Axiom 2.6 For all a and b in \mathbb{R} , exactly one of the following holds:					
a = b, a < b, b < a (trichotomy).					
Axiom 2.7 For all a, b , and c in \mathbb{R} , if $a < b$, then $a + c < b + c$.					
Axiom 2.8 For all a, b , and c in \mathbb{R} , if $a < b$ and $0 < c$, then $ac < bc$.					
Axiom 2.9 For all a, b , and c in \mathbb{R} , if $a < b$ and $b < c$, then $a < c$ (transitivity).					
Axiom 2.10 The positive integers are well-ordered. a set F 73 well ordered if every non-imply subset of A = F has a least element. Thus If A = F and A = Ø then three is a & E A 9.2. a < a for all a & A.					
Moren 1.5					
IN is well ordered ()					
the principle of mathematical induction holds					
">" cent tens " to show eggen volut but since ave'll assume IN is well ordered as an axiom in Chapter 2, I'll only present the derection = " have					
Proof,					
Suppose N is well ordered. Need to show that					
of 1) p(1) is true					
and (2) p(n) => p(n+1) for all nEIN					

then p(n) is true for all nGN.

For contradiction, suppose the priciple of prothematical induction does n't hold true. Thus there is a pin which satisfies D and 2 but for ashich ecul is NOT TRUE for all AGH. Define $A = \Xi n : p(\alpha)$ is false Ξ . Then $A \neq \emptyset$. Since AE IN and IN is well ordered them there exists moth st. no < n for all nEA. Since p(1) is true. Then $n_p > 1$. because $1 \notin A$. If follows No-1>0. which means mo-JEN. Claim p(no-1) is frue. If not them n-1 & A but them $n_0 \le n$ for all $n \in A$ implies $m_0 \le n_0 - 1$ whech is false. Thus $p(n_0 - 1)$ is rue. by (2) $p(n_0-1) \Rightarrow p(n_0)$ so $p(n_0)$ is true. That implies not A. This contradicts mog A Decimal representation of IR. Shows that TR actually exists... ZGR is given by

 $\mathcal{T} = \mathcal{M}_{\bullet} \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \cdots$ Advance $\mathcal{M} \in \mathbb{Z}$ and $\alpha_{1} \in \mathbb{Z}^{0,1,\dots,9} \mathcal{Z}$.

From an infinite service point if view

$$x = m + \sum_{i=1}^{\infty} \frac{1}{10^{i}} a_{i} \qquad \text{to recall}$$
Note are hoven't discussed
limits so don't think about
almentits converges yet.
Note a fraction come be conversed to a
repeating decimal asing distision.
The other area ... Example...
3.612 Ta = 3.672

Statia = 100 (1+ $\frac{1}{10^{2}} + \frac{1}{10^{2}} + \dots)$
 $= 3 + \frac{10}{10} + \frac{1}{10^{2}} (1 + \frac{2}{10}) + \frac{1}{10^{2}} (1 + \frac{2}{10}) + \dots)$
 $= 3 + \frac{10}{10} + \frac{1}{10^{2}} (1 + \frac{2}{10}) (1 + \frac{1}{10^{2}} + \frac{1}{10^{4}} + \dots)$
 $G = 1 + \frac{1}{100} + (\frac{1}{100})^{2} + (\frac{1}{100})^{2} + (\frac{1}{100})^{2} + \dots)$
 $to = 2 + (1 + \frac{1}{100})^{2} + (\frac{1}{100})^{2} + (\frac{1}{100})^{2} + \dots)$

Subtract

$$S = 1 + \frac{1}{100} + (\frac{1}{100})^2 + \frac{1}{100} + \frac{1}$$

Proofs	follow	the f	or m ia	cases
Case	a×o a	ا اصد	0\$C	
Carl	Q<0 C	end	b⋧ð	
Case	٩ ٦ ٥	Jone	620	
Coese	QLO	and	$b \le 0$	<i>»</i>