Completeness axion

But first: The extended real numbers R#= RUZ65UZ-03 ordening - no < x < no for all x G R. also - 10 < 10. Notes for any u, v E R# then either u=v, u<v or u>vbet only one of the above hold. Definition: Supremum and Infimum of a set. lost upper bound greatest lower bound. Mut S⊆R# then a = sup 5 means The is an upper bound of S (2) whenever & is another upper kind Shen x & Y. also Bzinfs moards C B is an lower bound of S (2) rotumener & is another lower knud Shen B≥8. The soft and sup are related to min and max Detraition of minimum and maximum. and so, s, ES thun

bo=ming means (bo ≤x) for all x € 8

Sze mars means Azza for all x S.
means to is a lower bound of 5, but I lon't need to gay it's the greatest lower bound because it's assumed that to ES
Thurren: If mins exists then minS=infs. Prop. 2.3 If maxs exists the emaxs=sups. in book prease
the proof Completeness Axiom for \mathbb{R} Every nonempty subset of \mathbb{R} that is bounded above has a supremum in \mathbb{R} .
Completeners avisn:
If SSR, and Sis bounded above.
and $5 \neq \emptyset$ means there is an upper bound $3 \in \mathbb{R}$ such that $\Delta \leq 3$ for all $\Delta \in S$.
then supSER.
Fdea: The least upper bound exists and it is a real number.
Convelleury: If SSIR and Sim bounded belows then infSEIR.
Proof: Mt A = ZrEIR: z is a lower bound of SJ.
(rabbit out of a hat)
Note AG IR claim A = 0. Since Sis bounded below there is at least me tower bound in A.
Claim A is hounded abour. Sits AEG thin since
ang SEA is a lower bound of S thin SEA.

Thus 855 for all 86A means & is an upper bound of A. So A is bounded above. By the completeness assism & has a least upper band. Alt d= sup A. Claim d= sorts. dury? Need to show at is the greatest haver bound of S. "Jet & be another lower bound of S. Thus & EA by destriction of A. Since de sup A then 8 < x. This shows that & is the quatest lower bound except I haven't shown & is a lower bound yet. Claim & is a lower bound of S. "Let DES. This since d = sup A this

Proof Let S be a nonempty subset of \mathbb{R} that is bounded below. Let $A = \{x \in \mathbb{R} : x \text{ is a lower bound of } S\}.$

Then A is nonempty and A is bounded above by each point in S. By the Completeness Axiom for \mathbb{R} , $\alpha = \sup A$ is a real number. We will show that $\alpha = \inf S$. Let s be in S. Then s is an upper bound of A. Since α is the least upper bound of A, $\alpha \leq s$. Thus, α is a lower bound of S.

To show that α is the greatest lower bound of *S*, let γ be a real lower bound of *S*. (If $\gamma = -\infty$, then clearly $\gamma \leq \alpha$.) We need to show that $\gamma \leq \alpha$. Since γ is a lower bound of *S*, γ is an element of *A*. Since α is an upper bound of *A*, $\gamma \leq \alpha$.

here is the people from the book. We'll finish if next time.