Theorem 2.2 \mathbb{Q} is dense in \mathbb{R}.
What does dense mean?
Definition: $f \subseteq \mathbb{R}$ is deuce ia \mathbb{R} if between only two real numbers the exists an element of A.
equivalently.
$\forall x, y \in R$ sot. $x<y$ then $A n(x, y) \neq \phi$.
Proof (of $Q \subset \mathbb{R}$ being arse)
Met $x, y \in \mathbb{R}$ sit. $x<y$. Claim $Q \cap(x, y) \neq \varnothing$.
Case $x<0$ and $0<y$: Then $0 \in Q$ and $O \in(x, y)$ Tuple: $\mathbb{Q} \cap(x, y) \neq \varnothing$.
case $x=0$ and $0<y$: Since $\frac{1}{y}>0$ and N is unbounded then there is $n \in \mathbb{N}$ seeds that $\frac{1}{y}<n$.
Therefore $\frac{1}{n}<y$.
This $\frac{1}{n} \in \mathbb{Q}$ and $\frac{1}{n} \in(0, y)$ implies $Q \cap(x, y) \neq 0$.
Case $0<x$ and $x<y$: Then $y-x>0$ so by Archinedien principle, there is on such tact

$$
\frac{1}{n}<y-x \text {. }
$$

Weed to fad a fraction betoreen x and y -
Hes $A=\left\{\frac{m}{n}: \frac{m}{n}<y\right\}$.
Claim $f \neq \varnothing$. $\frac{1}{n}<y-x$ so $\frac{1}{n}<y$ since $x>0$. Thus $\frac{1}{n} \in A$.

Platen A is hounded above..
If $\frac{m}{n} \in A$ thu $\frac{m}{n}<y$ so y is ane upper bound of A.
Therefore $a=\operatorname{sep} A \in \mathbb{R}$ complete ness anion of real numbers..
Let $\varepsilon>0$ than $\alpha-\varepsilon$ is not are upper bound
to there is $\frac{m}{n} \in A$ sigh pleat $\alpha-\varepsilon<\frac{m}{n}$ Let $\varepsilon=\frac{1}{n}$ then these is $\frac{n e}{n} \in A$ st. $\alpha-\frac{1}{n}<\frac{m}{n}$.
Therefore

$$
\alpha<\frac{m+1}{n}
$$

Recall

Thus $\quad x+\frac{1}{n}<y$, and $m_{n}^{m}<y, \sup A<\frac{m+1}{n}$
Need to shoo $\frac{m}{n}>x$.
For contradiction surpore $\frac{m}{n} \leqslant x$. subs shive Then $\frac{m+1}{n} \leqslant x+\frac{1}{n}<y$. This implies $\frac{m+1}{n} \in A$. since α is the least upper bound of A, then

$$
\frac{m+1}{n} \leqslant \alpha .
$$

But since $\alpha<\frac{m+1}{n}$ this sc a contradiction.
Trues $\frac{m}{n}>x$. So $\frac{m}{n} \in Q$ and $\frac{m}{n} \in(x, y)$ so $Q \cap(x, y) \notin \varnothing$.

Case $x<0$ and $y=0$
Case $x<y$ and $y<0$.
basic ally the
save cos cases save as cases already done by traeltiplylag by -1 and applying previous argument

Cardinality
$A \sim B$ means $\exists f: A \rightarrow B$ that's 1 to -l and onto.
$A \sim B$ means $\exists f: A \rightarrow B$ thetis a bijection.

Detialtions: A is finite means
there exits $n \in \mathbb{N}$ such thea $A \sim\{1,2, \ldots, n\}$.

- A is infinite means not finite.
- A is countable rafinite
means $A \sim \mathbb{N}$
- A is countable means lither finite or countably infinite.
- A is uncountable means that its neither finite nor countable.

Easy results are called Propositions. Harder ones are Theorem.
Please finish reading \$2,3 ow Sup and Int and them look at $\$ 2.4$ cardinality for next time.

