Theorem 2.2 Q is dense in R. What does dense mean? Detinition: A CIR is denne in R it between any two real numbers the exists an element of A. equivalently. ∀x,y ER s.t. x<y then An(x,y) ≠ Ø. Proof (of QER being anse) Art x,yER s.L. x<y. Claim Qn(x,y)7\$. Case x<0 and 0<4.</p> : Thin DER and DG(2,y) implier QN(Z,y) + Ø. ✓ Case x=0 and OKy: Since ½ 70 and N is unbounded then there is MEIN seede that ½ KD. Therefore Try. Thus hER and hE(0,y) implies $Q \cap (x,y) \neq 0$ I can ore and erey: Then y-2 >0 50 by Archinederen principle there is a such that よく ソーズ。 Need to find a fraction between x and y. Net $A \approx \Xi \frac{m}{n} : \frac{m}{n} < y \Xi$. Closen AFØ. K<y-x so h<y since x>0. Thus neA.

Clean A is housded above...
If
$$m \in A$$
 thun $m < y$ so y is
an upper bound of A.
Therefore $\alpha = \sup A \in \mathbb{R}$ completences anion of real
numbers...
Act $e > 0$ there $d - e$ is not an upper bound
to there is $m \in A$ such Auat $\alpha - e < \frac{m}{n}$
that $e = \frac{1}{n}$ there there is $m \in A$ such $\alpha - \frac{1}{n} < \frac{m}{n}$.
Therefore $\alpha < \frac{m+1}{n}$
Recall $\frac{1}{n} < y - z$.
Thus $z + \frac{1}{n} < y$, and $m < y$, $\sup A < \frac{m+1}{n}$
Need to show $\frac{m}{n} > z$.
For contraduction suppose $m < z$.
Since α is the least upper bound of A, then
 $\frac{m+1}{n} \leq \alpha$.
But since $\alpha < \frac{m+1}{n}$ this is a contraduction.
Thus $\frac{m+1}{n} \leq \alpha$.

so QN(xy) fp.

Eary nexults are called Propositions. Harden ones are theorem. Please finish reading &2.3 our sup and Inf and then look at \$2.4 Cardinality for next time.